基于改进2DCNN的高光谱遥感图像处理研究
作者:
中图分类号:

TP751.1

基金项目:

河南省高等学校重点科研项目(21B420002,222102210092);河南省高等教育教学改革研究与实践项目(2021SJGLX667);测绘地理信息职业教育研究课题(2021CHZD02);高分辨率对地观测系统国家科技重大专项(80-Y50G19-9001-22/23);教育部科技发展中心创新应用课题(ZJXF2022083,ZJXF2022041);河南省职业教育教学改革研究与实践重大项目(2023-ZYJYZD-003)


Hyperspectral remote sensing image processing based on enhanced 2DCNN
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对传统遥感图像处理中的时间成本和人工成本高、效率低等问题,以提高遥感高光谱图像分类中的处理速度、精度,降低参数量为目标,提出改进的2DCNN模型En-De-2CP-2DCNN.首先,使用1DCNN、2DCNN与3DCNN在Pavia University HSI数据集上分别进行分类实验,对比分析各自优缺点.其次,在保持较快的处理速度和不增加模型参数量的前提下,选择2DCNN为基础模型,参考SegNet的Encoder-Decoder结构,融入双卷积池化思想进行基础模型改进,同时优化学习策略.结果表明:En-De-2CP-2DCNN模型F1为99.96%,达到3DCNN的同等水平(99.36%),较改进前(97.28%)提高2.68个百分点;处理速度(5 s/epoch)和1DCNN位于同一量级,快于3DCNN(96 s/epoch);参数量(2.01 MB)较改进前降低了1.54 MB,虽高于3DCNN(316 KB),但远低于1DCNN(19.21 MB).En-De-2CP-2DCNN模型在处理速度和参数量方面的改进,有利于进一步实现移动端的轻量化部署.

    Abstract:

    To address the problems of high cost of time and labor and low efficiency frustrated traditional remote sensing image processing,an improved 2DCNN (2D Convolutional Neural Network) model abbreviated as En-De-2CP-2DCNN was proposed,with the purpose to improve the processing speed,accuracy and reduce the number of parameters in the classification of remote sensing Hyperspectral Images (HSI).First,1DCNN,2DCNN and 3DCNN were used to carry out classification experiments on Pavia University HSI dataset,and their advantages and disadvantages were compared and analyzed.Second,under the premise of maintaining fast processing speed without increasing model parameters,the 2DCNN was selected as the basic model,which was then improved with referring to the Encoder-Decoder structure of SegNet and integrating the idea of double convolutional pooling,and the learning strategy was optimized.The results show that the F1-score of the proposed En-De-2CP-2DCNN model is 99.96%,reaching the same level of 3DCNN (99.36%),which is 2.68 percentage points higher than that before improvement (97.28%);the processing speed (5 s/epoch) is comparable to that of 1DCNN and faster than 3DCNN (96 s/epoch);the amount of parameters is reduced from 3.55 MB to 2.01 MB,which is higher than 3DCNN (316 KB) but much lower than 1DCNN (19.21 MB).The proposed En-De-2CP-2DCNN model realizes accurate,fast and lightweight processing of remote sensing hyperspectral images.In particular,the improvement in processing speed and parameter amount is conducive to further realizing the lightweight deployment of mobile terminals.

    参考文献
    [1] 杜培军,夏俊士,薛朝辉,等.高光谱遥感影像分类研究进展[J].遥感学报,2016,20(2):236-256 DU Peijun,XIA Junshi,XUE Zhaohui,et al.Review of hyperspectral remote sensing image classification[J].Journal of Remote Sensing,2016,20(2):236-256
    [2] Licciardi G,Marpu P R,Chanussot J,et al.Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles[J].IEEE Geoscience and Remote Sensing Letters,2012,9(3):447-451
    [3] Villa A,Benediktsson J A,Chanussot J,et al.Hyperspectral image classification with independent component discriminant analysis[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(12):4865-4876
    [4] Hwang J T,Chang K T,Chiang H C.Satellite image classification based on Gabor texture features and SVM[C]//2011 19th International Conference on Geoinformatics.June 24-26,2011,Shanghai,China.IEEE,2011:1-6
    [5] Li J,Bioucas-Dias J M,Plaza A.Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning[J].IEEE Transactions on Geoscience and Remote Sensing,2010,48(11):4085-4098
    [6] Mahmon N A,Ya'acob N.A review on classification of satellite image using artificial neural network (ANN)[C]//2014 IEEE 5th Control and System Graduate Research Colloquium.August 11-12,2014,Shah Alam,Malaysia.IEEE,2014:153-157
    [7] Song B Q,Li J,Dalla M M,et al.Remotely sensed image classification using sparse representations of morphological attribute profiles[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(8):5122-5136
    [8] Du P J,Xue Z H,Li J,et al.Learning discriminative sparse representations for hyperspectral image classification[J].IEEE Journal of Selected Topics in Signal Processing,2015,9(6):1089-1104
    [9] Zhao W Z,Du S H.Spectral-spatial feature extraction for hyperspectral image classification:a dimension reduction and deep learning approach[J].IEEE Transactions on Geoscience and Remote Sensing,2016,54(8):4544-4554
    [10] Yue J,Zhao W Z,Mao S J,et al.Spectral-spatial classification of hyperspectral images using deep convolutional neural networks[J].Remote Sensing Letters,2015,6(6):468-477
    [11] Zhong Z L,Li J,Luo Z M,et al.Spectral-spatial residual network for hyperspectral image classification:a 3-D deep learning framework[J].IEEE Transactions on Geoscience and Remote Sensing,2018,56(2):847-858
    [12] Tran D,Bourdev L,Fergus R,et al.Learning spatiotemporal features with 3D convolutional networks[C]//2015 IEEE International Conference on Computer Vision (ICCV).December 7-13,2015,Santiago,Chile.IEEE,2016:4489-4497
    [13] 黎江,许明慧,张羽.基于Mask R-CNN的遥感影像土地分割与轮廓提取[J].南京信息工程大学学报(自然科学版),2021,13(1):116-123 LI Jiang,XU Minghui,ZHANG Yu.Land segmentation and contour extraction of remote sensing image based on Mask R-CNN[J].Journal of Nanjing University of Information Science & Technology (Natural Science Edition),2021,13(1):116-123
    [14] Badrinarayanan V,Kendall A,Cipolla R.SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495
    [15] Derosa G,Sahebkar A,Maffioli P.The role of various peroxisome proliferator-activated receptors and their ligands in clinical practice[J].Journal of Cellular Physiology,2018,233(1):153-161
    [16] Jiang L L,Wang Y X,Zheng W Y,et al.LSTMSPLIT:effective SPLIT learning based LSTM on sequential time-series data[J].arXiv e-print,2022,arXiv:2203.04305
    [17] Park S,Hwang J,Kwak N.3D human pose estimation using convolutional neural networks with 2D pose information[M]//Lecture Notes in Computer Science.Cham:Springer International Publishing,2016:156-169
    [18] Ghulam A,Ali F,Sikander R,et al.ACP-2DCNN:deep learning-based model for improving prediction of anticancer peptides using two-dimensional convolutional neural network[J].Chemometrics and Intelligent Laboratory Systems,2022,226:104589
    [19] Kamnitsas K,Ledig C,Newcombe V F J,et al.Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation[J].Medical Image Analysis,2017,36:61-78
    [20] Guida C,Zhang M,Shan J A.Knee osteoarthritis classification using 3D CNN and MRI[J].Applied Sciences,2021,11(11):5196
    [21] Mecheter I,Abbod M,Zaidi H,et al.Brain MR images segmentation using 3D CNN with features recalibration mechanism for segmented CT generation[J].Neurocomputing,2022,491:232-243
    [22] Morisita H,Inakagata K,Osana Y,et al.Implementation and evaluation of an arithmetic pipeline on FLOPS-2D:multi-FPGA system[J].ACM SIGARCH Computer Architecture News,2010,38(4):8-13
    [23] Jin B W,Xu Z.EAC-net:efficient and accurate convolutional network for video recognition[J].Proceedings of the AAAI Conference on Artificial Intelligence,2020,34(7):11149-11156
    [24] Xu B,Wang N,Chen T,et al.Empirical evaluation of rectified activations in convolutional network[J].arXiv e-print,2015,arXiv:1505.00853
    [25] Garland J,Gregg D.HOBFLOPS CNNs:hardware optimized bitslice-parallel floating-point operations for convolutional neural networks[J].arXiv e-print,2020,arXiv:2007.06563
    [26] 张煜东,吴乐南,王水花,等.一种基于神经网络的遥感图像压缩编码[J].南京信息工程大学学报(自然科学版),2009,1(1):82-88 ZHANG Yudong,WU Lenan,WANG Shuihua,et al.A neural network based compression coding for remote sensing images[J].Journal of Nanjing University of Information Science & Technology (Natural Science Edition),2009,1(1):82-88
    [27] 张霞,刘良云,赵春江,等.利用高光谱遥感图像估算小麦氮含量[J].遥感学报,2003,7(3):176-181,242 ZHANG Xia,LIU Liangyun,ZHAO Chunjiang,et al.Estimating wheat nitrogen concentration with high spectral resolution image[J].Journal of Remote Sensing,2003,7(3):176-181,242
    [28] 康健,管海燕,于永涛,等.基于RFA-LinkNet模型的高分遥感影像水体提取[J].南京信息工程大学学报(自然科学版),2023,15(2):160-168 KANG Jian,GUAN Haiyan,YU yongtao,et al.RFA-LinkNet:a novel deep learning network for water body extraction from high-resolution remote sensing images[J].Journal of Nanjing University of Information Science & Technology (Natural Science Edition),2023,15(2):160-168
    [29] 邓帅.基于改进贝叶斯优化算法的CNN超参数优化方法[J].计算机应用研究,2019,36(7):1984-1987 DENG Shuai.Hyper-parameter optimization of CNN based on improved Bayesian optimization algorithm[J].Application Research of Computers,2019,36(7):1984-1987
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵章红,张丹,胡昊,陈琳,常升龙.基于改进2DCNN的高光谱遥感图像处理研究[J].南京信息工程大学学报(自然科学版),2024,16(1):106-113
ZHAO Zhanghong, ZHANG Dan, HU Hao, CHEN Lin, CHANG Shenglong. Hyperspectral remote sensing image processing based on enhanced 2DCNN[J]. Journal of Nanjing University of Information Science & Technology, 2024,16(1):106-113

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-09
  • 在线发布日期: 2024-01-20
  • 出版日期: 2024-01-28

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司