基于BA-ELM和模糊机会约束的源荷储资源协同运行
作者:
作者单位:

国网宁夏电力有限公司经济技术研究院

基金项目:

国网宁夏电力有限公司科技项目(5229JY230007)


Cooperative operation of source-load-storage resources based on BA-ELM and fuzzy chance constraints
Author:
Affiliation:

Economic and Technical Research Institute of State Grid Ningxia Electric Power Co.

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    可靠有效的中长期电力需求预测是电力生产输送的重要依据,同时目前我国新能源规划发展迅速,风光波动性的影响不可忽视,未来电力系统规划能否适应需求变化场景经济高效地运行成为高度关切的问题。为综合考虑电力需求与电力系统协同运行,平抑新能源波动与需求偏差,提出了一种基于蝙蝠算法优化的极限学习机算法和引入模糊参数的源荷储资源协同运行算法的预测调度-综合评价模型,并以西北某地区为例进行了分析研究,结果表明该模型可以准确预测不同发展情景下的电力需求,并且可以为源荷储资源规划优化提出科学性参考意见。

    Abstract:

    Reliable and effective medium- and long-term power demand forecast is an important basis for power production and delivery, while at present, China's new energy planning is developing rapidly, the impact of wind and light volatility can not be ignored, the future of the power system planning can adapt to the demand change scenarios economically and efficiently run has become a high concern. In order to comprehensively consider the power demand and power system cooperative operation, a predictive dispatch-integrated evaluation model based on the bat algorithm optimization of the extreme learning machine algorithm and the introduction of fuzzy parameters of the source-load-storage resource cooperative operation algorithm is proposed, and an analysis and research is carried out for the example of the region in the Northwest, and the results show that the model can accurately forecast the power demand under different development scenarios, and can provide scientific references for the source-load-storage resource The results show that the model can accurately predict power demand under different development scenarios, and can provide scientific references for source-load-storage resource planning.

    参考文献
    [1] ????????????? 郑金山. “双碳”目标下基于GM(1,1)算法的黑龙江省“电力及建成区绿化覆盖率”预测 [J]. 哈尔滨师范大学自然科学学报, 2023, 39(03): 38-42.Zheng Jinshan. Prediction of "Power and Built-up Area Green Coverage " in Heilongjiang province based on GM(1,1) algorithm under "Double Carbon" target [J]. Journal of Natural Sciences of Harbin Normal University, 2023, 39(03): 38-42.
    [2] ????????????? 杜伟春, 罗宏波, 杨楠. 改进灰色预测模型在电力负荷预测中的应用 [J]. 湖南电力, 2023, 43(03): 88-93.DU Weichun, LUO Hongbo, YANG Nan. Application of improved gray forecasting model in power load forecasting [J]. Hunan Electric Power, 2023, 43(03): 88-93.
    [3] ????????????? 邵佳佳, 田一帆, 黄露, et al. 面向电力市场交易的客户电量预测技术研究 [J]. 电力与能源, 2023, 44(04): 359-63.Shao Jiajia, Tian Yifan, Huang Lu, et al. Research on customer power forecasting technology for electricity market trading [J]. Power and Energy, 2023, 44(04): 359-63.
    [4] ????????????? 李一, 杨茂, 苏欣. 基于集成聚类及改进马尔科夫链模型的光伏功率短期预测 [J]. 南方电网技术: 1-10.LI Yi, YANG Mao, SU Xin. Short-term prediction of photovoltaic power based on integrated clustering and improved Markov chain model [J]. Southern Power Grid Technology: 1-10.
    [5] ????????????? 田佳, 杨敏, 王加庆, et al. 基于改进支持向量机的中长期电量预测算法设计 [J]. 电子设计工程, 2023, 31(11): 107-10+15.Tian Jia, Yang Min, Wang Jiaqing, et al. Design of medium and long-term electricity forecast algorithm based on improved support vector machine [J]. Electronic Design Engineering, 2023, 31(11): 107-10+15.
    [6] ????????????? 李发崇, 李鹏, 高莲, et al. 基于多尺度模型融合和VMD-TCN-RF混合网络的短期电力负荷预测方法 [J]. 电子器件, 2023, 46(04): 1035-42.Li Fachong, Li Peng, Gao Lian, et al. Short-term power load forecasting method based on multiscale model fusion and VMD-TCN-RF hybrid network [J]. Electronic Devices, 2023, 46(04): 1035-42.
    [7] ????????????? 黄星知, 刘星, 张文娟, et al. 改进决策树在电网超短期负荷预测中的应用 [J]. 能源与环保, 2022, 44(07): 265-71.Huang Xingzhi, Liu Xing, Zhang Wenjuan, et al. Application of improved decision tree in power grid ultra-short-term load forecast [J]. Energy and Environmental Protection, 2022, 44(07): 265-71.
    [8] ????????????? 王克杰, 张瑞. 基于改进BP神经网络的短期电力负荷预测方法研究 [J]. 电测与仪表, 2019, 56(24): 115-21.K.J. Wang, R. Zhang. Research on short-term power load forecasting method based on improved BP neural network [J]. Electrical Measurement and Instrumentation, 2019, 56(24): 115-21.
    [9] ????????????? 奚莉莉, 李程. 基于BP神经网络的短期电力负荷预测方法研究 [J]. 汉江师范学院学报, 2023, 43(03): 23-6.Xi Lili, Li Cheng. On short-term power load forecasting method??? based on BP neural network [J]. Journal of Hanjiang Normal College, 2023, 43(03): 23-6.
    [10] ????????????? 许言路, 武志锴, 朱赫炎等. 基于多尺度卷积神经网络的短期电力负荷预测 [J]. 沈阳工业大学学报, 2020, 42(06): 618-23.XU Yanlu, WU Zhikai, ZHU Heyan, et al. Short-term load forecasting based on multi-scale convolutional neural network [J]. Journal of Shenyang University of Technology, 2020, 42(06): 618-23.
    [11] ????????????? 陈晓红, 王辉, 李喜华. 基于KPCA-CNN-DBiGRU模型的短期负荷预测方法 [J]. 管理工程学报: 1-11.CHEN Xiaohong, WANG Hui, LI Xihua. A short-term load forecasting method based on KPCA-CNN-DBiGRU model [J]. Journal of Management Engineering: 1-11.
    [12] ????????????? 高漪, 周瑜, 张安龙等. 整县光伏下基于个性化联邦学习的光伏出力及负荷功率预测 [J]. 电网技术: 1-10.Gao Yi, Zhou Yu, Zhang Anlong et al. A personalized federated learning framework for countrywide PV generation and load forecasting [J]. Grid Technology: 1-10.
    [13] ????????????? 李玲玲, 任琦瑛, 宁楠等. 基于ISHO-ELM模型的短期电力负荷预测 [J]. 天津工业大学学报, 2023, 42(03): 73-80.Li Lingling, Ren Qiying, Ning Nan, et al. Short-term power load forecasting based on ISHO-ELM model [J]. Journal of Tianjin Polytechnic University, 2023, 42(03): 73-80.
    [14] ????????????? 王童. 基于改进人工蜂鸟算法优化ELM的电力负荷预测 [J]. 计算机时代, 2023, (06): 43-7.Wang T. Optimized ELM based on improved artificial hummingbird algorithm for power load forecasting [J]. Computer Age, 2023, (06): 43-7.
    [15] ????????????? 刘晓宇, 王斌. 基于源网荷储优化的电力系统协同控制方法 [J]. 电气自动化, 2021, 43(05): 45-7.LIU Xiaoyu, WANG Bin. Cooperative control method of power systems based on optimization of source, network, load and storage [J]. Electrical Automation,2021,43(05):45-47.
    [16] ????????????? 曾顺奇, 汤森垲, 程浩忠等. 考虑源网荷储协调优化的主动配电网网架规划 [J]. 南方电网技术, 2018, 12(03): 35-43.ZENG Shunqi, TANG Senkai, CHENG Haozhong et al. Framework planning of active distribution network considering coordination optimization of generation, network, load and storage [J]. Southern Power Grid Technology,2018,12(03):35-43.
    [17] ????????????? 刘莹, 宋丽敏, 龚强等. 考虑需求响应的乡村综合能源系统源网荷储协调规划模型研究 [J]. 湖南电力, 2023, 43(03): 21-8.LIU Ying,SONG Limin,GONG Qiang et al. Research on source-grid-load-storage coordinated planning model of rural integrated energy system considering demand response[J]. Hunan Electric Power,2023,43(03):21-28.
    [18] ????????????? 杨谦, 刘继春, 蒋万枭. 光伏不同渗透率下考虑源网荷储深度互动的电力系统调峰策略 [J]. 电力建设, 2021, 42(09): 74-84.YANG Qian, LIU Jichun, JIANG Wanlord. Peak regulation strategy of power system considering the interaction of source-network-load-storage under different penetration rate of PV [J]. Power Construction, 2021, 42(09): 74-84.
    [19] ????????????? 李永光, 杨建兵, 杜欣慧等. 考虑风电消纳的电-热综合能源系统优化运行 [J]. 电力电容器与无功补偿, 2021, 42(05): 228-35.LI Yongguang, YANG Jianbing, DU Xinhui et al. Optimal operation of integrated electric-heat energy system considering wind power consumption[J]. Power Capacitor and Reactive Power Compensation,2021,42(05):228-235.
    [20] ????????????? 李旭东, 艾欣, 胡俊杰等. 计及碳交易机制的核-火-虚拟电厂三阶段联合调峰策略研究 [J]. 电网技术, 2019, 43(07): 2460-70.LI Xudong,AI Xin,HU Junjie et al. Three-stage combined peak regulation strategy for nuclear-thermal-virtual power plant considering carbon trading mechanism[J]. Grid Technology,2019,43(07):2460-2470.
    [21] ????????????? 张东月, 张照彦, 王培光等. 基于预测偏差惩罚和绿色证书交易的商服中心综合能源系统日前调度优化 [J]. 中国测试, 2022, 48(10): 100-8.ZHANG Dongyue, ZHANG Zhaoyan, WANG Peiguang et al. Day-ahead scheduling optimization of integrated energy system of commercial service center based on prediction deviation penalty and green certificate trading[J]. China Test,2022,48(10):100-108.
    [22] ????????????? 雷涛, 鞠立伟, 彭道鑫等. 计及碳排放权交易的风电储能协同调度优化模型 [J]. 华北电力大学学报(自然科学版), 2015, 42(03): 97-104.LEI Tao, JU Liwei, PENG Daoxin et al. Collaborative scheduling optimization model of wind power and energy storage system considering the carbon emissions trade[J]. Journal of North China Electric Power University (Natural Science Edition),2015,42(03):97-104.
    [23] ????????????? 张林垚, 黄东明, 王彦铭等. 基于模糊与一致性复合智能算法的“源-网-荷-储”协同控制策略研究 [J]. 电气传动, 2021, 51(17): 44-51.ZHANG Linyao, HUANG Dongming, WANG Yanming et al. Research on “source-grid-load-storage” cooperative control strategy based on fuzzy and consistent composite intelligent algorithm[J]. Electrical Drives,2021,51(17):44-51.
    [24] ????????????? 崔杨, 周慧娟, 仲悟之等. 考虑源荷两侧不确定性的含风电电力系统低碳调度 [J]. 电力自动化设备, 2020, 40(11): 85-93.CUI Yang, ZHOU Huijuan, ZHONG Wuzhi et al. Low-carbon scheduling of power system with wind power considering uncertainty of both source and load sides [J]. Power Automation Equipment,2020,40(11):85-93.
    [25] ????????????? SILITONGA A S, MASJUKI H H, ONG H C, et al. Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine [J]. Energy, 2018, 159: 1075-87.
    [26] ????????????? ZHANG X-H, ZHU Q-X, HE Y-L, et al. A novel robust ensemble model integrated extreme learning machine with multi-activation functions for energy modeling and analysis: Application to petrochemical industry [J]. Energy, 2018, 162: 593-602.
    [27] ????????????? LI W, ZHANG S, LU C. Research on the driving factors and carbon emission reduction pathways of China''s iron and steel industry under the vision of carbon neutrality [J]. Journal of Cleaner Production, 2022, 357.
    [28] ????????????? 于德鳌, 李慧, 刘思嘉等. 基于改进萤火虫算法的含风电系统环境经济调度 [J]. 电力科学与技术学报, 2020, 35(02): 84-92.YU Deao, LI Hui, LIU Sijia et al. Environmental economic dispatch of power system integrate with wind power based on an improved glowworm swarm optimization[J]. Journal of Electric Power Science and Technology,2020,35(02):84-92.
    [29] ????????????? 喻鑫, 胡志坚, 陈锦鹏等. 阶梯碳下考虑P2G-CCS与供需灵活响应的IES优化调度 [J]. 武汉大学学报(工学版): 1-14.YU Xin, HU Zhijian, CHEN Jinpeng et al. Optimal Dispatch of integrated energy system considering P2G-CCS coupling and supply-demand flexible response under stepped carbon [J]. Journal of Wuhan University (Engineering Edition): 1-14.
    [30] ????????????? QI S, CHENG S, TAN X, et al. Predicting China''s carbon price based on a multi-scale integrated model [J]. Applied Energy, 2022, 324.
    相似文献
    引证文献
    引证文献 [0]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张泽龙,陈宝生,杨燕,靳盘龙,刘桐,赵嘉麒.基于BA-ELM和模糊机会约束的源荷储资源协同运行[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:53
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-01-10
  • 最后修改日期:2024-02-06
  • 录用日期:2024-02-26

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司