基于集成深度学习模型的空气质量指数预测
作者:
中图分类号:

TP183

基金项目:

国家社会科学基金青年项目(20CTJ 008);全国统计科学研究重点项目(2021LZ28);陕西省自然科学基金项目(2022JQ-042)


Air quality index prediction based on integrated deep learning model
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    大气污染严重危害居民的出行安全和身体健康,空气质量指数(AQI)是一种用于测量空气质量状况的综合指标,对AQI的预测可以提醒公众空气质量信息,使人们做出更明智的出行决策.通过提前预测空气质量的变化,政府和环保部门可以采取应急措施以减轻空气污染.本文提出基于卷积神经网络和门控循环单元的集成深度学习模型(CNN-GRU)对AQI进行预测.其中,卷积神经网络(CNN)提取污染气体浓度和AQI的时空特征并完成特征映射,门控循环单元(GRU)建模时序关系并高效完成计算.选取2014—2022年北京市和广州市的6种主要污染气体(PM2.5、PM10、SO2、CO、NO2、O3)日平均质量浓度和AQI进行实例研究,使用CNN-GRU模型对AQI进行预测,与多元宇宙优化的广义回归神经网络模型(MVO-GRNN)、遗传算法优化的BP神经网络模型(GA-BP)对AQI的预测进行对比分析.实验结果表明,本文提出的CNN-GRU模型对AQI的预测误差最小.

    Abstract:

    Air pollution seriously endangers the travel safety and health of residents.As a comprehensive indicator used to measure air quality condition,Air Quality Index (AQI) can alert the public to air quality and enable people to make more informed travel decisions.By predicting the change of air quality in advance,the government and environmental protection departments can take emergency measures to reduce air pollution.Here,we propose an integrated deep learning model based on Convolutional Neural Network and Gated Recurrent Unit (CNN-GRU) for AQI prediction.The CNN is used to extract the spatial and temporal characteristics of air pollutants and AQI and complete the feature mapping,while the GRU to model the temporal relationship and complete the calculation and AQI efficiently.The daily average concentrations of six major air pollutants (PM2.5,PM10,SO2,CO,NO2,O3) in Beijing and Guangzhou during 2014-2022 are selected for example study,and the AQI is predicted using the CNN-GRU model.The results show that,compared with Multiverse-Optimized Generalized Regression Neural Network model (MVO-GRNN) and Genetic Algorithm-optimized BP neural network model (GA-BP),the proposed CNN-GRU model has the smallest prediction error for AQI.

    参考文献
    [1] 秦耀辰,谢志祥,李阳.大气污染对居民健康影响研究进展[J].环境科学,2019,40(3):1512-1520 QIN Yaochen,XIE Zhixiang,LI Yang.Review of research on the impacts of atmospheric pollution on the health of residents[J].Environmental Science,2019,40(3):1512-1520
    [2] 牟敬锋,赵星,樊静洁,等.基于ARIMA模型的深圳市空气质量指数时间序列预测研究[J].环境卫生学杂志,2017,7(2):102-107,117 MOU Jingfeng,ZHAO Xing,FAN Jingjie,et al.Time series prediction of AQI in Shenzhen based on ARIMA model[J].Journal of Environmental Hygiene,2017,7(2):102-107,117
    [3] 杨思琪,赵丽华.随机森林算法在城市空气质量预测中的应用[J].统计与决策,2017(20):83-86 YANG Siqi,ZHAO Lihua.Application of random forest algorithm in urban air quality prediction[J].Statistics & Decision,2017(20):83-86
    [4] 焦东方,孙志华.空气质量指数回归分析[J].中国海洋大学学报(自然科学版),2018,48(增刊2):228-234 JIAO Dongfang,SUN Zhihua.Regression analysis of air quality index[J].Periodical of Ocean University of China,2018,48(sup2):228-234
    [5] Shishegaran A,Saeedi M,Kumar A,et al.Prediction of air quality in Tehran by developing the nonlinear ensemble model[J].Journal of Cleaner Production,2020,259:120825
    [6] Phruksahiran N.Improvement of air quality index prediction using geographically weighted predictor methodology[J].Urban Climate,2021,38:100890
    [7] 胡青,龚世才,胡珍.基于改进麻雀搜索算法的空气质量指数预测[J].广西科学,2022,29(4):642-651 HU Qing,GONG Shicai,HU Zhen.Air quality index prediction based on improved sparrow search algorithm[J].Guangxi Sciences,2022,29(4):642-651
    [8] 孙启森,张建新,程海阳,等.基于注意力的卷积神经网络金融时序数据预测[J].计算机应用,2022,42(增刊2):290-295 SUN Qisen,ZHANG Jianxin,CHENG Haiyang,et al.Financial time series data prediction by attention-based convolutional neural network[J].Journal of Computer Applications,2022,42(sup2):290-295
    [9] 袁培森,黎薇,任守纲,等.基于卷积神经网络的菊花花型和品种识别[J].农业工程学报,2018,34(5):152-158 YUAN Peisen,LI Wei,REN Shougang,et al.Recognition for flower type and variety of chrysanthemum with convolutional neural network[J].Transactions of the Chinese Society of Agricultural Engineering,2018,34(5):152-158
    [10] Shujaat M,Wahab A,Tayara H,et al.pcPromoter-CNN:a CNN-based prediction and classification of promoters[J].Genes,2020,11(12):1529
    [11] 周飞燕,金林鹏,董军.卷积神经网络研究综述[J].计算机学报,2017,40(6):1229-1251 ZHOU Feiyan,JIN Linpeng,DONG Jun.Review of convolutional neural network[J].Chinese Journal of Computers,2017,40(6):1229-1251
    [12] 杨丽,吴雨茜,王俊丽,等.循环神经网络研究综述[J].计算机应用,2018,38(S2):1-6,26 YANG Li,WU Yuxi,WANG Junli,et al.Research on recurrent neural network[J].Journal of Computer Applications,2018,38(S2):1-6,26
    [13] Liu P H,Liu J,Wu K.CNN-FCM:system modeling promotes stability of deep learning in time series prediction[J].Knowledge-Based Systems,2020,203:106081
    [14] 罗建豪,吴建鑫.基于深度卷积特征的细粒度图像分类研究综述[J].自动化学报,2017,43(8):1306-1318 LUO Jianhao,WU Jianxin.A survey on fine-grained image categorization using deep convolutional features[J].Acta Automatica Sinica,2017,43(8):1306-1318
    [15] 王艳平,韩晓冰.基于CNN的主动悬架传感器故障诊断[J/OL].控制工程:1-6[2022-11-22].https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C45S0n9fL2suRadTyEVl2pW9UrhTDCdPD64wIMnTVGX3TlB19tACLaj6qrspFdwKw3wbBCaM13H3OmPugJRq6N6D&uniplatform=NZKPT WANG Yanping,HAN Xiaobing.CNN-based active suspension sensor fault diagnosis[J/OL].Control Engineering:1-6[2022-11-22].https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C45S0n9fL2suRadTyEVl2pW9UrhTDCdPD64wIMnTVGX3TlB19tACLaj6qrspFdwKw3wbBCaM13H3OmPugJRq6N6D&uniplatform=NZKPT
    [16] 蔡薇薇,徐彦伟,颉潭成.基于CNN-LSTM的轴承剩余使用寿命预测[J].机械传动,2022,46(10):17-23 CAI Weiwei,XU Yanwei,XIE Tancheng.Prediction of bearing remaining service life based on CNN-LSTM[J].Journal of Mechanical Transmission,2022,46(10):17-23
    [17] Cho K,van Merrienboer B,Gulcehre C,et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[J].arXiv e-print,2014,arXiv:1406.1078
    [18] Hochreiter S,Schmidhuber J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780
    [19] 彭豪杰,周杨,胡校飞,等.基于深度学习与随机森林的PM2.5浓度预测模型[J].遥感学报,2023,27(2):430-440 PENG Haojie,ZHOU Yang,HU Xiaofei,et al.A PM2.5 prediction model based on deep learning and random forest[J].Journal of Remote Sensing,2023,27(2):430-440
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

路凯丽,杨露,李涛.基于集成深度学习模型的空气质量指数预测[J].南京信息工程大学学报(自然科学版),2024,16(1):56-65
LU Kaili, YANG Lu, LI Tao. Air quality index prediction based on integrated deep learning model[J]. Journal of Nanjing University of Information Science & Technology, 2024,16(1):56-65

复制
分享
文章指标
  • 点击次数:276
  • 下载次数: 1451
  • HTML阅读次数: 541
  • 引用次数: 0
历史
  • 收稿日期:2023-04-21
  • 在线发布日期: 2024-01-20
  • 出版日期: 2024-01-28

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司