基于Time2Vec的天然气负荷组合预测方法研究
DOI:
作者:
作者单位:

西安建筑科技大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学(62072363)


Time2Vec-based natural gas load mix forecasting model study
Author:
Affiliation:

1.XI&2.amp;3.#39;4.&5.AN UNIVERSITY OF ARCHITECTURE AND TECHNOLOGY

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对天然气负荷序列的复杂性和非线性,本文提出一种基于Time2Vec的天然气负荷组合预测模型。首先采用皮尔逊相关系数进行相关性分析,提取出相关性强的气象特征;其次,引入时间向量嵌入层Time2vec,将时间序列转换为连续向量空间,提取相应的时间特征,提高了模型对时间序列信息的计算效率。将Time2Vec提取的时间特征、皮尔逊相关系数选取出的气象特征和原始负荷序列输入到长短期记忆网络(LSTM)和时间卷积网络(TCN)中进行负荷预测,充分利用LSTM的长期记忆能力和TCN的局部特征提取能力。最后,将这两个模型通过注意力机制(Attention)组合起来,根据两个模型的重要程度分别赋予不同的权重,得到最终预测结果。实验结果表明,所提出的基于Time2Vec的天然气负荷组合预测模型具有更强的适应性和更高的精度。

    Abstract:

    Aiming at the complexity and nonlinearity of natural gas load sequence, this paper proposes a natural gas load combination forecasting model based on Time2Vec. Firstly, Time2vec, a time vector embedding layer, is introduced to convert the time series into a continuous vector space, which improves the computational efficiency of the model on the time series information; secondly, the Pearson correlation coefficient is used for the correlation analysis, and the meteorological features with strong correlation are extracted as inputs. The temporal features extracted by Time2Vec and the meteorological features selected by Pearson"s correlation coefficient are inputted into the two models of Long Short-Term Memory Network (LSTM) and Temporal Convolutional Network (TCN) for prediction, which make full use of the long term memory capability of LSTM and the local feature extraction capability of TCN. Finally, these two models are combined through Attention mechanism (Attention), and different weights are assigned according to the importance of the two to obtain the final prediction results. The experimental results show that the proposed Time2Vec-based natural gas load combination prediction model has stronger adaptability and higher accuracy.

    参考文献
    相似文献
    引证文献
引用本文

王可睿,邵必林.基于Time2Vec的天然气负荷组合预测方法研究[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-04
  • 最后修改日期:2024-03-11
  • 录用日期:2024-03-12
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司