基于改进YOLOv5s的交通标识检测算法
作者:
中图分类号:

TP391.4


Traffic sign detection based on improved YOLOv5s
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    针对交通标识在图像中占比小、检测精度低且周围环境复杂等问题,提出一种基于改进YOLOv5s的算法.首先,在主干网络部分添加注意力机制ECA(Efficient Channel Attention,高效通道注意力),增强网络的特征提取能力,有效解决了周围环境复杂的问题;其次,提出HASPP(Hybrid Atrous Spatial Pyramid Pooling,混合空洞空间金字塔池化),增强了网络结合上下文的能力;最后,修改网络中的Neck结构,使高层特征与底层特征有效融合,同时避免了跨卷积层造成的信息丢失.实验结果表明,改进后的算法在交通标识数据集上取得了94.4%的平均检测精度、74.1%的召回率以及94.0%的精确率,较原始算法分别提升了3.7、2.8、3.4个百分点.

    Abstract:

    An algorithm based on improved YOLOv5s is proposed to address the problems of small percentage of traffic signs in the image,low detection accuracy and complex surrounding environment.First,the attention mechanism of ECA (Efficient Channel Attention) is added to the backbone network part to enhance the feature extraction ability of the network and effectively solve the problem of complex surrounding environment.Second,the HASPP (Hybrid Atrous Spatial Pyramid Pooling) is proposed,which enhances the network's ability to combine context.Finally,the neck structure in the network is modified to allow efficient fusion of high level features with underlying features while avoiding information loss across convolutional layers.Experimental results show that the improved algorithm achieves an average detection accuracy of 94.4%,a recall rate of 74.1% and an accuracy rate of 94.0% on the traffic signage dataset,which were 3.7,2.8,and 3.4 percentage points higher than the original algorithm,respectively.

    参考文献
    [1] Timofte R,Zimmermann K,Gool L V.Multi-view traffic sign detection,recognition,and 3D localisation[J].Machine Vision and Applications,2014,25(3):633-647
    [2] Zang D,Zhang J Q,Zhang D D,et al.Traffic sign detection based on cascaded convolutional neural networks[C]//2016 17th IEEE/ACIS International Conference on Software Engineering,Artificial Intelligence,Networking and Parallel/Distributed Computing (SNPD).IEEE,2016:201-206
    [3] Redmon J,Farhadi A.YOLOv3:an incremental improvement[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:89-95
    [4] Bochkovskiy A,Wang C Y,Liao H Y M.YOLOv4:optimal speed and accuracy of object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2020.DOI:10.48550/arXiv.2004.10934
    [5] Liu W,Anguelov D,Erhan D,et al.SSD:single shot multibox detector[C]//European Conference on Computer Vision.Cham:Springer,2016:21-37
    [6] Girshick R,Donahue J,Darrell T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2014:580-587
    [7] Ren S Q,He K M,Girshick R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149
    [8] He K M,Zhang X Y,Ren S Q,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916
    [9] 刘安邦,施赛楠,杨静,等.基于虚警可控梯度提升树的海面小目标检测[J].南京信息工程大学学报(自然科学版),2022,14(3):341-347 LIU Anbang,SHI Sainan,YANG Jing,et al.Sea-surface small target detection based on false-alarm-controllable gradient boosting decision tree[J].Journal of Nanjing University of Information Science & Technology(Natural Science Edition),2022,14(3):341-347
    [10] 陈浩霖,高尚兵,相林,等.FIRE-DET:一种高效的火焰检测模型[J].南京信息工程大学学报(自然科学版),2023,15(1):76-84 CHEN Haolin,GAO Shangbing,XIANG Lin,et al.FIRE-DET:an efficient flame detection model[J].Journal of Nanjing University of Information Science & Technology(Natural Science Edition),2023,15(1):76-84
    [11] Zhang K,Sheng Y,Li J.Automatic detection of road traffic signs from natural scene images based on pixel vector and central projected shape feature[J].IET Intelligent Transport Systems,2012,6(3):282-291
    [12] 鲍敬源,薛榕刚.基于YOLOv3模型压缩的交通标志实时检测算法[J].计算机工程与应用,2020,56(23):202-210 BAO Jingyuan,XUE Ronggang.Compression algorithm of traffic sign real-time detection based on YOLOv3 model[J].Computer Engineering and Applications,2020,56(23):202-210
    [13] He K M,Zhang X Y,Ren S Q,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778
    [14] Liu S,Qi L,Qin H F,et al.Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:8759-8768
    [15] Hu J,Shen L,Sun G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:7132-7141
    [16] Chen L C,Papandreou G,Kokkinos I,et al.DeepLab:semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2016,40(4):834-848
    [17] Wang P Q,Chen P F,Yuan Y,et al.Understanding convolution for semantic segmentation[C]//2018 IEEE Winter Conference on Applications of Computer Vision (WACV).IEEE,2018:1451-1460
    [18] Zhu Z,Liang D,Zhang S H,et al.Traffic-sign detection and classification in the wild[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:2110-2118
    [19] Woo S,Park J,Lee J Y,et al.CBAM:convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV),2018:3-19
    [20] Hou Q B,Zhou D Q,Feng J S.Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:13713-13722
    [21] Ge Z,Liu S T,Wang F,et al.Yolox:exceeding Yolo series in 2021[J].arXiv e-print,2021,arXiv:2107.08430
    [22] Zhu B J,Wang J F,Jiang Z K,et al.Autoassign:differentiable label assignment for dense object detection[J].arXiv e-print,2020,arXiv:2007.03496
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李孟浩,袁三男.基于改进YOLOv5s的交通标识检测算法[J].南京信息工程大学学报(自然科学版),2024,16(1):11-19
LI Menghao, YUAN Sannan. Traffic sign detection based on improved YOLOv5s[J]. Journal of Nanjing University of Information Science & Technology, 2024,16(1):11-19

复制
分享
文章指标
  • 点击次数:294
  • 下载次数: 1450
  • HTML阅读次数: 146
  • 引用次数: 0
历史
  • 收稿日期:2023-05-02
  • 在线发布日期: 2024-01-20
  • 出版日期: 2024-01-28

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司