一种基于TrellisNet和注意力机制的电力设备故障检测模型
DOI:
作者:
作者单位:

1.广东电网有限责任公司东莞供电局信息中心;2.南京信息工程大学软件学院;3.广东电网有限责任公司东莞供电局物流服务中心

作者简介:

通讯作者:

中图分类号:

TP183;TM507? ???????????????????????????????????

基金项目:

南方电网公司信息化重点项目(031900HK42200008),江苏省自然科学基金(BK20171458)。


A fault detection model of power equipment based on TrellisNet and attention mechanism
Author:
Affiliation:

1.Dongguan Power Supply Bureau information center of Guangdong Power Grid Corporation;2.School of Software, Nanjing University of Information Science and Technology;3.Guangdong Power Grid Co., LTD., Dongguan Power Supply Bureau, Logistics Service Center

Fund Project:

Key Project of Informatization of Southern Power Grid Corporation(031900HK42200008),Natural Science Foundation of Jiangsu Province(BK20171458)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在电力设备故障检测任务中,模型的性能受到多种因素的影响,如故障种类的多样性、故障特征的复杂性和图像质量的差异等。为了解决这些问题,提出了一种基于TrellisNet和注意力机制的新型电力设备故障检测模型。该模型首先将长短期记忆(Long Short-Term Memory,LSTM)和卷积神经网络(Convolutional Neural Networks,CNN)进行融合,构建LSTM-CNN来获取图片中的故障特征,这可以有效地区分不同故障类型的特征,并减少噪声和干扰因素的影响。此外,将LSTM-CNN获得的特征数据作为输入,并通过将注意力机制嵌入到TrellisNet中,构建具有高分辨能力的AT-TrellisNet网络来检测不同电力设备的故障类型。最后通过选取5种常见的电力设备故障进行模型验证,实验结果显示,该模型与一些现有的检测模型相比,检测精确率较高,最高可达90%以上,可满足实际电力设备故障检测需求。

    Abstract:

    In the task of power equipment fault detection, the performance of the model is affected by various factors, such as the diversity of fault types, the complexity of fault characteristics, and the differences in image quality. To solve these problems, a new power equipment fault detection model based on TrellisNet and attention mechanism is proposed. The model first integrates Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) to construct LSTM-CNN to obtain fault characteristics in images, which can effectively distinguish features of different fault types and reduce the influence of noise and interference factors. In addition, the feature data obtained by LSTM-CNN is used as input, and by embedding the attention mechanism into TrellisNet, an AT-TrellisNet network with high resolution is constructed to detect the fault types of different power equipment. Finally, by selecting five common power equipment faults for model verification, the experimental results show that the model has a higher detection accuracy rate of over 90% compared to some existing detection models, which can meet the actual power equipment fault detection requirements.

    参考文献
    相似文献
    引证文献
引用本文

罗金满,叶思琪,王海彬,黎玉青,封祐钧.一种基于TrellisNet和注意力机制的电力设备故障检测模型[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-27
  • 最后修改日期:2024-03-11
  • 录用日期:2024-03-12
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司