基于多要素 3D 特征提取的短期定量降水预报技术研究
DOI:
作者:
作者单位:

1.南京信息工程大学;2.国家气象中心

作者简介:

通讯作者:

中图分类号:

基金项目:

新疆维吾尔自治区重点研发任务专项(编号 2022B03027)、国家重点研究发展计划灾害性天气公里级无缝隙 快速滚动预报技术研究项目(2021YFC3000903)、国家自然科学基金项目(重点项目)(U20B2061)、中国气象局创新发展 项目(CXFZ2023J001)


Research on Short-Term Quantitative Precipitation Forecasting Technology Based on Multi-Factor 3D Feature Extraction
Author:
Affiliation:

1.Nanjing University of Information Science and Technology;2.National Meteorological Centre

Fund Project:

Xinjiang Uygur Autonomous Region Key Research and Development Task Special (No. 2022B03027), National Key Research and Development Plan Disaster Weather Kilometer Level seamless Rapid Rolling Forecasting Technology Research Program (2021YFC3000903), National Natural Science Foundation of China (Key Program) (U20B2061), and Innovative Development of China Meteorological Administration Program (CXFZ2023J001)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统业务数值天气模式 (Numerical Weather Prediction,NWP)在定量降水预报任务中,由于空间分辨率有限、物理参数化方案不够完善、泛化性较弱等原因,使得 NWP 预报中存在固有偏差,而深度学习神经网络有着强大的非线性拟合能力、能够自主性学习到任务相关的关键特征、泛化性较高等优势,可以有望改善现状。为了解决上述问题,本文提出基于多要素 3D 特征提取的短期定量降水预报技术研究,基于欧洲中期天气预报中心(ECMWF)提供的高分辨率 ECMWF-HRES(EC-Hres)模式预报数据,构建3D-QPF(3D-Quantitative Precipitation Forecast)语义分割模型,通过先分类后回归的耦合框架,捕捉多种降水相关要素数据的 3D 空间特征,并得到与降水实况数据间的相非线性关系,最后在损失函数中增加 PR(Pre and Rec)损失函数进一步提升模型对偏态数据的预报效果。实验结果表明,3D-QPF 的逐日累积降水预报不仅在晴雨量级(0.1mm/24h)准确率评分稳定增长,在暴雨量级(50mm/24h)的准确率评分也有明显提升:暴雨量级较 EC-Hres 的 TS(Threat Score)评分最高提升了 15.8%,均方根误差(RMSE,Root Mean Square Error)优化达到 18.71%。经过长期检验,3D-QPF 模型与 EC-Hres、中国气象局全球模式(CMA-GFS)预报以及 2D-Unet 和 3D-Unet 等经典网络模型相比做出了有效的预报订正效果。此外,随着预报时效延长至 3 天,模型的优化效果仍能够保持相较稳定。

    Abstract:

    Traditional numerical weather prediction (NWP) models have inherent biases in quantitative precipitation forecasting tasks due to limited spatial resolution, incomplete physical parameterization schemes, and weak generalization, Deep learning neural networks, with their strong non-linear fitting capabilities, autonomous learning of task-relevant features, and high generalization, hold the potential to address these issues and improve the current state of NWP forecasting. To address the aforementioned issues, this paper proposes a research on short-term quantitative precipitation forecasting technology based on multi factor 3D feature extraction. Based on high-resolution ECMWF HRES (EC Hs) model forecasting data provided by the European Centre for Medium Range Weather Forecasts (ECMWF), a 3D-QPF (3D-Quantitative Precision Forecast) semantic segmentation model is constructed. Through a coupled framework of classification and regression, the 3D spatial features of various precipitation related element data are captured, And obtain a non-linear relationship with the actual precipitation data, and finally add the PR (Pre and Rec) loss function to the loss function to further improve the predictive performance of the model on skewed data.The experimental results show that the accuracy score of 3D-QPF daily cumulative precipitation forecast not only increases steadily on the sunny and rainy scale (0.1mm/24h), but also improves significantly on the rainstorm scale (50mm/24h): the rainstorm scale is 15.8% higher than the EC-Hres 'TS(Threat Score) score, and the root mean square error (RMSE,Root Mean Square Error) optimization reaches 18.71%. After long-term testing, the 3D- QPF model has achieved effective prediction correction compared to classic network models such as ECHres, China Meteorological Administration Global Model (CMA-GFS) forecasting, 2D Unet, and 3D-Unet. In addition, as the forecast time is extended to 3 days, the optimization effect of the model can still remain relatively stable.

    参考文献
    相似文献
    引证文献
引用本文

熊文睿,张恒德,陆振宇,郭云谦.基于多要素 3D 特征提取的短期定量降水预报技术研究[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-22
  • 最后修改日期:2024-01-23
  • 录用日期:2024-01-23
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司