基于自注意力神经网络的电网线损预测方法
DOI:
作者:
作者单位:

南瑞集团有限公司国网电力科学研究院有限公司 南京 215200

作者简介:

通讯作者:

中图分类号:

TP 273

基金项目:


A line loss prediction method for power grid based on self-attention neural network
Author:
Affiliation:

NARI Group, State Grid Electric Power Research Institute

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电力配送过程中不可避免产生线损。使用循环神经网络进行线损预测存在信息遗忘和梯度消失等问题,在面对长时间序列的预测时预测精度不理想。为了提高线损预测的准确性,提出一种基于自注意力机制的线损预测模型。首先,根据近期的整体功耗、线损和时间等信息构建一个高维时间序列;然后,基于高维时间序列的数据结搭建一个自注意力神经网络模型;接着,利用一个开源数据集进行训练和测试,并以均方误差作为线损预测的评估指标。实验结果表明,基于自注意力机制的线损预测模型能够有效地预测线损,在面对长时间线损序列时自注意力神经网络时具有较好的预测性能。

    Abstract:

    Line losses are an inevitable issue in the process of power distribution and have a direct impact on the economic performance of power companies. Therefore, accurately predicting line losses has become a focal concern for the power sector. Predicting line losses using recurrent neural networks can encounter issues related to forgetting, making accurate predictions challenging for longer time series. To enhance the accuracy of line loss prediction, a line loss prediction model based on the self-attention mechanism is proposed. Initially, a high-dimensional time series is constructed using information such as the overall power consumption, line losses, and time within a recent period. Subsequently, a self-attention neural network model is established. Then, an open-source dataset is utilized for training and testing, with mean squared error as evaluation metrics. Ultimately, experimental results demonstrate that the line loss prediction model based on the self-attention mechanism can effectively predict line losses, particularly demonstrating strong predictive performance for longer line loss sequences when employing self-attention neural networks.

    参考文献
    相似文献
    引证文献
引用本文

丁宏,陶晓峰,陆春艳,吴海龙.基于自注意力神经网络的电网线损预测方法[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-29
  • 最后修改日期:2024-02-27
  • 录用日期:2024-03-05
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司