基于遗传算法的无人驾驶卡车路径跟踪控制研究
DOI:
作者:
作者单位:

南京林业大学

作者简介:

通讯作者:

中图分类号:

基金项目:

江苏省产业前瞻与关键核心技术项目(BE2022053-2)


Research on Path Tracking Control of Unmanned Truck Based on Genetic Algorithm
Author:
Affiliation:

Nanjing Forestry University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    路径跟踪在无人驾驶中起着至关重要的作用。为提高无人驾驶卡车在不同车速下路径跟踪的精度与稳定性,设计了一种基于改进遗传算法优化的线性二次调节器(LQR)进行路径跟踪。首先,基于自然坐标系建立车辆二自由度动力学模型和跟踪误差模型,并设计LQR控制器,采用前馈控制消除稳态误差,提高跟踪精度。其次,通过改进遗传算法对LQR的权重矩阵进行优化,以提高路径跟踪的精度与稳定性。最后,通过Matlab/Simulink-TruckSim联合仿真平台在不同工况下对所设计的LQR控制器控制效果进行仿真验证。结果表明,GA优化后的LQR控制器跟踪精度平均提高了约38.8%,且具有更高的稳定性,位置误差和航向误差分别可控制在0.17m和0.11rad以内,证明了本文中所提出的跟踪控制框架的有效性。

    Abstract:

    Path tracking is essential for unmanned driving. This study presents the design of a path tracking system for unmanned trucks, aiming to enhance accuracy and stability across various speeds. The system employs a linear quadratic regulator (LQR) optimized through an improved genetic algorithm. Firstly, this study begins by establishing a two-degree-of-freedom dynamic model and tracking error model of the vehicle based on the natural coordinate system. Subsequently, a LQR controller is designed to eliminate steady-state errors and enhance tracking accuracy through the implementation of feedforward control. Secondly, the genetic algorithm is enhanced to optimize the weight matrix of the LQR controller, resulting in improved accuracy and stability for path tracking. Finally, the control effectiveness of the designed LQR controller was simulated and verified across a range of operating conditions using the joint simulation platform of Matlab/Simulink and TruckSim. The findings demonstrate that the tracking accuracy of the LQR controller, optimized using GA, has exhibited an average improvement of approximately 38.8%. Additionally, it has demonstrated enhanced stability. Specifically, the position error and heading error could be maintained within 0.17m and 0.11rad, respectively, thereby validating the efficacy of the tracking control framework proposed in this research paper.

    参考文献
    相似文献
    引证文献
引用本文

张涛,赵奉奎,张涌,高峰,吕立亚,李冰林.基于遗传算法的无人驾驶卡车路径跟踪控制研究[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-08
  • 最后修改日期:2024-03-18
  • 录用日期:2024-03-19
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司