基于遗传算法的无人驾驶卡车路径跟踪控制研究
作者单位:

南京林业大学

基金项目:

江苏省产业前瞻与关键核心技术项目(BE2022053-2)


Research on Path Tracking Control of Unmanned Truck Based on Genetic Algorithm
Affiliation:

Nanjing Forestry University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    路径跟踪在无人驾驶中起着至关重要的作用。为提高无人驾驶卡车在不同车速下路径跟踪的精度与稳定性,设计了一种基于改进遗传算法优化的线性二次调节器(LQR)进行路径跟踪。首先,基于自然坐标系建立车辆二自由度动力学模型和跟踪误差模型,并设计LQR控制器,采用前馈控制消除稳态误差,提高跟踪精度。其次,通过改进遗传算法对LQR的权重矩阵进行优化,以提高路径跟踪的精度与稳定性。最后,通过Matlab/Simulink-TruckSim联合仿真平台在不同工况下对所设计的LQR控制器控制效果进行仿真验证。结果表明,GA优化后的LQR控制器跟踪精度平均提高了约38.8%,且具有更高的稳定性,位置误差和航向误差分别可控制在0.17m和0.11rad以内,证明了本文中所提出的跟踪控制框架的有效性。

    Abstract:

    Path tracking is essential for unmanned driving. This study presents the design of a path tracking system for unmanned trucks, aiming to enhance accuracy and stability across various speeds. The system employs a linear quadratic regulator (LQR) optimized through an improved genetic algorithm. Firstly, this study begins by establishing a two-degree-of-freedom dynamic model and tracking error model of the vehicle based on the natural coordinate system. Subsequently, a LQR controller is designed to eliminate steady-state errors and enhance tracking accuracy through the implementation of feedforward control. Secondly, the genetic algorithm is enhanced to optimize the weight matrix of the LQR controller, resulting in improved accuracy and stability for path tracking. Finally, the control effectiveness of the designed LQR controller was simulated and verified across a range of operating conditions using the joint simulation platform of Matlab/Simulink and TruckSim. The findings demonstrate that the tracking accuracy of the LQR controller, optimized using GA, has exhibited an average improvement of approximately 38.8%. Additionally, it has demonstrated enhanced stability. Specifically, the position error and heading error could be maintained within 0.17m and 0.11rad, respectively, thereby validating the efficacy of the tracking control framework proposed in this research paper.

    参考文献
    [1] Mittal N, Udayakumar PD, Raghuram G, et al. The endemic issue of truck driver shortage - A comparative study between India and the United States[J]. RESEARCH IN TRANSPORTATION ECONOMICS, 2018, 71: 76-84.
    [2] Wang F, Zhang Z. Route Control and Behavior Decision of Intelligent Driverless Truck Based on Artificial Intelligence Technology[J]. Wireless Communications and Mobile Computing, 2022, 2022: 1-10.
    [3] Ahn J, Shin S, Kim M, et al. Accurate Path Tracking by Adjusting Look-Ahead Point in Pure Pursuit Method[J]. International Journal of Automotive Technology, 2021, 22(1): 119-129.
    [4] Wang L, Zhai Z, Zhu Z, et al. Path Tracking Control of an Autonomous Tractor Using Improved Stanley Controller Optimized with Multiple-Population Genetic Algorithm[J]. Actuators, 2022, 11(1): 22.
    [5] Belman-Flores JM, Rodríguez-Valderrama DA, Ledesma S, et al. A Review on Applications of Fuzzy Logic Control for Refrigeration Systems[J]. Applied Sciences, 2022, 12(3): 1302.
    [6] Chen Z, Liu Y, He W, et al. Adaptive-Neural-Network-Based Trajectory Tracking Control for a Nonholonomic Wheeled Mobile Robot With Velocity Constraints[J]. IEEE Transactions on Industrial Electronics, 2021, 68(6): 5057-5067.
    [7] 邵俊恺, 赵翾, 杨珏, 等. 无人驾驶铰接式车辆强化学习路径跟踪控制算法[J]. 农业机械学报, 2017, 48(3): 376-382.
    Shao Junkai, Zhao Yan, Yang Jue, et al Reinforcement Learning Path Tracking Control Algorithm for Unmanned Articulated Vehicles [J] Journal of Agricultural Machinery, 2017, 48 (3): 376-382
    [9] [8] Wang D, Chen J, Chen Y, et al. Parking Robot Path-Tracking System Based on Discrete PID Algorithm[J]. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2023, 27(3): 411-420.
    [10] [9] 王艺, 蔡英凤, 陈龙, 等. 基于模型预测控制的智能网联汽车路径跟踪控制器设计[J]. 机械工程学报, 2019, 55(8): 136-144+153.
    Wang Yi, Cai Yingfeng, Chen Long, et al Design of an intelligent networked vehicle path tracking controller based on model predictive control [J] Journal of Mechanical Engineering, 2019, 55 (8): 136-144+153
    [12] [10] Hu C, Chen Y, Wang J. Fuzzy Observer-Based Transitional Path-Tracking Control for Autonomous Vehicles[J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22(5): 3078-3088.
    [13] [11] Wu Y, Wang L, Zhang J, et al. Path Following Control of Autonomous Ground Vehicle Based on Nonsingular Terminal Sliding Mode and Active Disturbance Rejection Control[J]. IEEE Transactions on Vehicular Technology, 2019, 68(7): 6379-6390.
    [14] [12] Wang Z, Sun K, Ma S, et al. Improved Linear Quadratic Regulator Lateral Path Tracking Approach Based on a Real-Time Updated Algorithm with Fuzzy Control and Cosine Similarity for Autonomous Vehicles[J]. ELECTRONICS, 2022, 11(22): 3703.
    [15] [13] 陈亮, 秦兆博, 孔伟伟, 等. 基于最优前轮侧偏力的智能汽车LQR横向控制[J]. 清华大学学报(自然科学版), 2021, 61(9): 906-912.
    Chen Liang, Qin Zhaobo, Kong Weiwei, et al Intelligent vehicle LQR lateral control based on optimal front wheel lateral force [J] Journal of Tsinghua University (Natural Science Edition), 2021, 61 (9): 906-912
    [17] [14] Kapania NR, Gerdes JC. Design of a feedback-feedforward steering controller for accurate path tracking and stability at the limits of handling[J]. VEHICLE SYSTEM DYNAMICS, 2015, 53(12): 1687-1704.
    [18] [15] Xu S, Peng H. Design, Analysis, and Experiments of Preview Path Tracking Control for Autonomous Vehicles[J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21(1): 48-58.
    [19] [16] 王柏林, 李云伍, 赵颖, 等. 基于蚁狮算法优化的LQR横向跟踪控制策略[J]. 重庆理工大学学报(自然科学), 2023, 37(4): 27-38.
    Wang Bolin, Li Yunwu, Zhao Ying, et al LQR lateral tracking control strategy based on ant lion algorithm optimization [J] Journal of Chongqing University of Technology (Natural Science), 2023, 37 (4): 27-38
    [21] [17] 胡杰, 钟鑫凯, 陈瑞楠, 等. 基于模糊LQR的智能汽车路径跟踪控制[J]. 汽车工程, 2022, 44(1): 17-25+43.
    Hu Jie, Zhong Xinkai, Chen Ruinan, et al Intelligent Vehicle Path Tracking Control Based on Fuzzy LQR [J] Automotive Engineering, 2022, 44 (1): 17-25+43
    [23] [18] Chen C, Ma R, Ma W. GA-LQR for vehicle semi-active suspension with BiLSTM inverse model of magnetic rheological damper[J]. TRANSACTIONS OF THE CANADIAN SOCIETY FOR MECHANICAL ENGINEERING, 2023.
    [24] [19] 罗玉涛, 周天阳, 许晓通. 基于遗传算法的四轮转向-驱动汽车时变LQR控制[J]. 华南理工大学学报(自然科学版), 2021, 49(3): 114-122.
    Luo Yutao, Zhou Tianyang, Xu Xiaotong Time variant LQR control for four-wheel steering drive vehicles based on genetic algorithm [J] Journal of South China University of Technology (Natural Science Edition), 2021, 49 (3): 114-122
    [26] [20] 宋春生, 于传超, 张锦光, 等. 基于遗传算法的复杂双层磁悬浮精密隔振系统LQR控制研究[J]. 振动与冲击, 2016, 35(16): 99-105.
    Song Chunsheng, Yu Chuanchao, Zhang Jinguang, et al Research on LQR Control of Complex Double Layer Magnetic Suspension Precision Isolation System Based on Genetic Algorithm [J] Vibration and Shock, 2016, 35 (16): 99-105
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张涛,赵奉奎,张涌,高峰,吕立亚,李冰林.基于遗传算法的无人驾驶卡车路径跟踪控制研究[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:47
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-11-08
  • 最后修改日期:2024-03-18
  • 录用日期:2024-03-19

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司