基于梯度权值追踪的域自适应分类研究
DOI:
作者:
作者单位:

1.南京信息工程大学自动化学院;2.南京信息工程大学

作者简介:

通讯作者:

中图分类号:

基金项目:

科技创新2030-“新一代人工智能”重大项目(No.2018AAA0100400),国家自然科学基金项目(No.U21B2049,No.61936005)


Research on Domain Adaptive Classification Based on Gradient Weight Pursuit
Author:
Affiliation:

1.School of Automation, Nanjing University of Information Science and Technology;2.Nanjing University of Information Science and Technology

Fund Project:

Science and Technology Innovation 2030- "New generation of Artificial Intelligence" major project(No.2018AAA0100400),The National Natural Science Foundation of China (No.U21B2049,No.61936005)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文提出一种基于梯度权值追踪的剪枝与优化算法(GWP),旨在解决无监督领域中存在的过拟合问题,即在下游任务上的精度远低于在训练集上的精度。针对无监督领域自适应中基于差异与基于对抗的方法,将稠密-稀疏-稠密策略应用于解决过拟合问题,先对网络进行密集预训练,并学出哪些连接是重要的;其次是剪枝阶段,与原有的稠密-稀疏-稠密策略中的剪枝过程不同,本文的优化算法同时将权值和梯度联合考虑,一方面运用到了权值信息(即零阶信息),另一方面也考虑到了梯度信息(即一阶信息)对网络剪枝过程的影响;在最后的重密集阶段,恢复被修剪的连接,并以较小的学习率重新训练密集网络。最终,得到的网络在下游任务上取得了理想的效果。实验结果表明,与原有的基于差异和基于对抗的领域自适应方法相比,本文提出的GWP可以有效提升下游任务精度,且具有即插即用的效果。

    Abstract:

    In this paper, we propose a pruning and optimization algorithm (GWP) based on gradient weight Pursuit to solve the overfitting problem in the unsupervised domain, that is, the accuracy of downstream tasks is much lower than that of training sets. The dense-sparse-dense strategy is applied to solve the overfitting problem for the difference and adversarial adaptive methods in the unsupervised domain. The network is trained intensively and which connections are important are learned. The second is the pruning stage. Different from the pruning process in the original dense-sparse-dense strategy, the optimization algorithm in this paper considers both weight and gradient. On the one hand, weight information (i.e. zero-order information) is used, and on the other hand, the influence of gradient information (i.e. first-order information) on the network pruning process is also considered. In the final intensive phase, the pruned connections are restored and the intensive network is retrained with a smaller learning rate. Finally, the obtained network achieves ideal results in downstream tasks. The experimental results show that the proposed GWTA can effectively improve the accuracy of downstream tasks and has a plug-and-play effect compared with the original difference-based and adversarial domain adaptive methods.

    参考文献
    相似文献
    引证文献
引用本文

崔绍君,季繁繁,王婷,袁晓彤.基于梯度权值追踪的域自适应分类研究[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-27
  • 最后修改日期:2024-02-15
  • 录用日期:2024-02-25
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司