基于图卷积网络的交通流预测方法综述
DOI:
作者:
作者单位:

浙江理工大学

作者简介:

通讯作者:

中图分类号:

基金项目:


A Survey of Traffic Flow Prediction Methods based on Graph Convolutional Networks
Author:
Affiliation:

Zhejiang Sci-Tech University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,基于深度学习的交通流预测方法一直是交通流预测领域的研究热点。与传统卷积神经网络不同,适合处理非欧几里得数据的图卷积网络在空间特征建模方面表现出了强大的能力,而反映路网空间特征的拓扑图、距离图、流量相似图等正是典型的非欧几里得数据。因此,基于图卷积网络及其变体的交通流预测方法成为交通流预测领域的一个研究热点,并取得了很多有吸引力的研究结果。本文对近年来基于图卷积网络的交通流预测模型进行了分类和总结。首先,从图卷积网络的基本定义出发,结合空域卷积和谱域卷积的定义详述了图卷积的基本原理。其次,根据预测模型的网络结构特点,将基于图卷积网络的交通流预测模型分为“组合型”和“改进型”两大类,并对其中最具代表性的模型结构进行了详细分析和讨论。 此外,对交通流预测领域中常用于模型性能对比的典型数据集进行了综述,并以其中一个真实数据集为例开展仿真测试,展示了4个基于图卷积网络交通流预测模型的预测性能。最后,基于当前的研究现状和发展趋势,对基于图卷积网络的交通流预测方法研究领域中未来的研究热点和难点进行了开放性的讨论和展望。

    Abstract:

    In recent years, traffic flow prediction methods based on deep learning have been a hot research topic in the field of traffic flow prediction. Unlike traditional convolutional neural networks, graph convolutional networks, which are suitable for processing non-Euclidean data, have shown powerful capabilities in spatial feature modeling. Meanwhile, topological maps, distance maps and flow similarity maps that reflect the spatial characteristics of the road network are typical non-European data. Therefore, traffic flow prediction based on graph convolutional networks and its variants has become a research hotspot in the field of traffic flow prediction, and many attractive research results have been achieved. This article classifies and summarizes traffic flow prediction models based on graph convolutional networks in recent years. First, starting from the basic definition of graph convolutional network, the basic principles of graph convolution are described in detail by combining the definitions of spatial convolution and spectral convolution. Secondly, according to the network structure characteristics of the prediction model, the traffic flow prediction models based on graph convolutional network are divided into two major categories: "combined type" and "improved type". The most representative model structures are analyzed and discussed in detail. In addition, a review of typical data sets commonly used in the field of traffic flow prediction for model performance comparison is provided, and a simulation test is conducted using one of these real datasets to demonstrate the prediction performance of four traffic flow prediction models based on graph convolutional networks. Finally, based on the current research status and development trends, an open discussion and outlook on the future research hotspots and challenges in the field of traffic flow prediction methods based on graph convolutional networks are conducted.

    参考文献
    相似文献
    引证文献
引用本文

叶宝林.基于图卷积网络的交通流预测方法综述[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-05
  • 最后修改日期:2023-11-22
  • 录用日期:2023-11-24
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司