基于注意力时间卷积网络的农产品期货分解集成预测
DOI:
作者:
作者单位:

华南农业大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金面上项目(71971089);国家自然科学基金青年项目(72001083);广东省自然科学基金面上项目(2022A1515011612)


Forecasting the agricultural futures with decomposition-ensemble strategy based on attentional temporal convolution network
Author:
Affiliation:

South China Agricultural University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对农产品期货时间序列数据受多方面因素影响,非线性、非平稳数据特征难以提取而导致预测准确性不高的问题,本文基于“分解-集成”的预测思想,提出一种基于CEEMDAN与TransformerEncoder-TCN的农产品期货预测方法。首先,使用自适应噪声完备经验模态分解(CEEMDAN)将时间序列分解为多尺度多频率的本征模态分量(Intrinsic Mode Function, IMF)与残差,降低了序列建模复杂度;其次,使用融合多阶段自注意力单元TransformerEncoder的时间卷积网络(Temporal Convolution Network, TCN)对各个分量子序列进行特征提取与预测,优化了序列显著特征建模权重;最后,将各个子序列预测值线性相加集成得到最终预测结果。以南华期货公司农产品指数中的大豆期货指数为研究对象,采用时序交叉验证与参数迁移的方式进行模型重训练,消融和对比实验结果表明,提出的新模型在RMSE、MAE和DS三个评价指标上具有良好的效果,验证了该模型对农产品期货预测的有效性。

    Abstract:

    In response to the problem that agricultural futures are affected by many factors so that nonlinear and nonsmooth features are difficult to extract and lead to low prediction accuracy, this paper proposes a forecasting method based on CEEMDAN and TransformerEncoder-TCN, which is from the idea of "decomposition-ensemble". First, the complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is used to decompose the time series into multiscale Intrinsic Mode Function (IMF) and residuals, reducing the complexity of series modeling. Second, each subseries is predicted using Temporal Convolutional Network (TCN) incorporating multi-stage self-attention unit (TransformerEncoder) which optimizes the modeling weights of the significant features of the sequence. Finally, the prediction results of each subseries are linearly summed and integrated to obtain the final prediction results. The soybean futures revenue index in the agricultural product index of South China Futures Company is used as the research object. The model is retrained by using time-series cross-validation and parameter transfer. The ablation and comparison experimental results show that the model proposed in this paper has superiority in RMSE, MAE and DS, verifying its effectiveness in predicting agricultural product futures.

    参考文献
    相似文献
    引证文献
引用本文

张大斌,黄均杰,凌立文,林锐斌.基于注意力时间卷积网络的农产品期货分解集成预测[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-22
  • 最后修改日期:2023-10-20
  • 录用日期:2023-10-27
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司