基于ikPCA-FABAS-KELM的短期风电功率预测
作者:
作者单位:

1.云南民族大学电气信息工程学院;2.新疆独山子石化公司供水供电公司

中图分类号:

TM614

基金项目:

国家自然科学基金资助项目(U1802271)


Short Term Wind Power Prediction Based on ikPCA-FABAS-KELM
Author:
Affiliation:

1.School of Electrical Information Engineering,Yunnan Minzu University,Kunming;2.Xinjiang Dushanzi Petrochemical Company water supply and power supply company,Kelamayi

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了增强在短期风电功率预测领域中传统数据驱动机器学习模型的精确度,提出基于ikPCA-FABAS-KELM的短期风电功率预测模型。首先,对主成分分析进行改进,提出可逆核主成分分析(ikPCA),在保证数据特征的同时,降低输入数据的复杂度,以提升模型运行速度;其次,引入萤火虫个体吸引策略对天牛须算法进行改进,提出FABAS算法;最后,利用FABAS算法对核极限学习机的正则化参数C和核参数γ 进行寻优,降低人为对模型盲目训练的影响,提高模型预测精度。仿真结果显示,提出的预测模型有效提高了传统模型的预测精度。

    Abstract:

    In order to improve the accuracy of traditional data-driven machine learning models in short-term wind power prediction, a short-term wind power prediction model based on ikPCA-FABAS-KELM is proposed. Firstly, an improvement is made to principal component analysis, proposing reversible kernel principal component analysis (ikPCA), which reduces the complexity of input data while ensuring data features, in order to improve the running speed of the model; Secondly, the introduction of individual attraction strategies for fireflies improves the Tenebrio algorithm and proposes the FABAS algorithm; Finally, the FABAS algorithm is used to optimize the regularization parameter C and kernel parameters γ of the kernel limit learning machine, reducing the impact of manual parameter setting on blind model training and improving model prediction accuracy. The simulation results show that the proposed prediction model effectively improves the prediction accuracy of traditional models.

    参考文献
    [1] 万 灿, 宋永华. 新能源电力系统概率预测理论与方法及其应用[J]. 电力系统自动化, 2021, 45(1): 2-16.
    [2] WAN Can, SONG Yonghua. Theories, methodologies and applications of probabilistic forecasting for power systems with renewable energy sources[J]. Automation of Electric Power Systems, 2021, 45(1): 2-16
    [3] 姜惠兰, 周照清, 蔡继朝. 风电接入比例对电力系统暂态功角稳定性影响的分析方法[J]. 电力自动化设备, 2020, 40(07): 53-67.
    [4] JIANG Huilan, ZHOU Zhaoqing, CAI Jichao. Analysis method of influence of wind power access proportion on transient power angle stability of power system[J]. Electric Power Automation Equipment, 2020, 40 (07): 53-67.
    [5] 王伟胜, 王 铮, 董 存, 等. 中国短期风电功率预测技术现状与误差分析[J]. 电力系统自动化, 2021, 45(01): 17-27.
    [6] WANG Weisheng, WANG Zheng, DONG Cun, et al. Status and error analysis of short-term forecasting technology of wind power in china[J]. Automation of Electric Power Systems, 2021, 45(01): 17-27
    [7] LI L L, CHANG Y B, TSENG M L, et al. Wind power prediction using a novel model on wavelet decomposition-support vector machines-improved atomic search algorithm[J]. Journal of Cleaner Production, 2020, 270: 121817.
    [8] 岳晓宇, 彭显刚, 林 俐. 鲸鱼优化支持向量机的短期风电功率预测[J]. 电力系统及其自动化学报, 2020, 32(02): 146-150.
    [9] YUE Xiaoyu, PENG Xiangang, LIN Li. Short-term wind power forecasting based on whales optimization algorithm and support vector machine[J]. Proceedings of the CSU-EPSA, 2020, 32(02): 146-150.
    [10] TAN L, HAN J, ZHANG H. Ultra-short-term wind power prediction by salp swarm algorithm-based optimizing extreme learning machine[J]. IEEE Access, 2020, 8: 44470-44484.
    [11] 龙 干,黄 媚,方力谦,等.基于改进多元宇宙算法优化ELM的短期电力负荷预测[J].电力系统保护与控制,2022,50(19):99-106.
    [12] LONG Gan, HUANG Mei, FANG Liqian, et al. Short-term power load forecasting based on an improved multi-verse optimizer algorithm optimized extreme learning machine[J] Power System Protection and Control, 2022,50(19):99-106.
    [13] 史加荣, 赵丹梦, 王琳华等. 基于RR-VMD-LSTM的短期风电功率预测[J]. 电力系统保护与控制, 2021, 49(21): 63-70.
    [14] SHI Jiarong, ZHAO Danmeng, WANG Linhua, et al. Short-term wind power prediction based on RR-VMD-LSTM[J]. Power System Protection and Control, 2021, 49(21): 63-70
    [15] 赵凌云, 刘友波, 沈晓东, 等. 基于CEEMDAN和改进时间卷积网络的短期风电功率预测模型[J]. 电力系统保护与控制, 2022, 50(01): 42-50.
    [16] ZHAO Lingyun, LIU Youbo, SHEN Xiaodong, et al. Short-term wind power prediction model based on CEEMDAN and an improved time convolutional network[J]. Power System Protection and Control, 2022, 50(01): 42-50
    [17] 苗长新, 李 昊, 王 霞, 等. 基于数据驱动和深度学习的超短期风电功率预测[J]. 电力系统自动化, 2021, 45(14): 22-29.
    [18] MIAO Changxin, LI Hao, WANG Xia, et al Data-driven and deep-learning-based ultra-short-term wind power prediction[J]. Automation of Electric Power Systems, 2021, 45(14): 22-29
    [19] 叶 林, 赵金龙, 路 朋, 等. 考虑气象特征与波动过程关联的短期风电功率组合预测[J]. 电力系统自动化, 2021, 45(04): 54-62.
    [20] YE Lin, ZHAO Jinlong, LU Peng, et al. Combined prediction of short-term wind power considering correlation of meteorological features and fluctuation process[J]. Automation of Electric Power Systems, 2021, 45(04): 54-62
    [21] 胡 帅, 向 月, 沈晓东, 等. 计及气象因素和风速空间相关性的风电功率预测模型[J]. 电力系统自动化, 2021, 45(07): 28-36.
    [22] HU Shuai, XIANG Yue, SHEN Xiaodong, et al. Wind power prediction model considering meteorological factor and spatial correlation of wind speed[J]. Automation of Electric Power Systems, 2021, 45(07): 28-36.
    [23] 商立群, 李洪波, 侯亚东, 等. 基于VMD-ISSA-KELM的短期光伏发电功率预测[J]. 电力系统保护与控制, 2022, 50(21): 138-148.
    [24] SHANG Liqun, LI Hongbo, HOU Yadong, et al. Short-term photovoltaic power generation prediction based on VMD-ISSA-KELM[J] Power System Protection and Control, 2022, 50(21): 138-148.
    [25] 张淑清, 杨振宁, 姜安琦, 等. 基于EN-SKPCA降维和FPA优化LSTMNN的短期风电功率预测[J]. 太阳能学报, 2022, 43(06): 204-211.
    [26] ZHANG Shuqing, YANG Zhenning, JIANG Anqi, et al. Short term wind power prediction basted on EN-SKPCA dimensionality reduction and FPA optimizing LSTMNN[J]. Acta Energiae Solaris Sinica, 2022, 43(06): 204-211
    [27] 王 浩, 王 艳, 纪志成. 基于SAIGM-KELM的短期风电功率预测[J]. 电力系统保护与控制, 2020, 48(18): 78-87.
    [28] WANG Hao, WANG Yan, JI Zhicheng. Short-term wind power forecasting based on SAIGM-KELM[J]. Power System Protection and Control, 2020, 48(18): 78-87
    [29] WANG Hang, PENG Minjun, Yu Yue, et al. Fault identification and diagnosis based on KPCA and similarity clustering for nuclear power plants[J]. Annals of Nuclear Energy. 2021,150: 107786
    [30] HU Qin, Qin Aisong, ZHANG Qinghua, et al. Fault Diagnosis Based on Weighted Extreme Learning Machine With Wavelet Packet Decomposition and KPCA[J]. IEEE Sensors Journal, 2018, 18(20):8472-8483
    [31] Lin Meijin , Li Qinghao, Wang Fei, et al. An improved beetle antennae search algorithm and its application on economic load distribution of power system[J]. IEEE Access, 2020, 8: 99624-99632.
    [32] LI Jun, WEI Xiaoyu, LI Bo, et al. A survey on firefly algorithms[J] Neurocomputing, 2022,500: 662-678.
    [33] HUANG G B, ZHOU H, DING X, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems Man Cybernetics Part B, 2012, 42(2): 513-529.
    相似文献
    引证文献
    引证文献 [0]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐 武,范鑫豪,沈智方,刘 洋,刘 武.基于ikPCA-FABAS-KELM的短期风电功率预测[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:114
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-08-10
  • 最后修改日期:2023-10-27
  • 录用日期:2023-10-30

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司