基于改进2DCNN的高光谱遥感图像处理研究
DOI:
作者:
作者单位:

1.黄河水利职业技术学院 测绘工程学院;2.河南农业大学 农学院

作者简介:

通讯作者:

中图分类号:

基金项目:


Research on hyperspectral remote sensing image processing based on enhanced 2DCNN
Author:
Affiliation:

1.Yellow River Conservancy Technical Institute;2.Henan Agriculture University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    摘要:针对传统遥感图像处理中的时间成本和人工成本高、效率低等问题,以提高遥感高光谱图像(Hyperspectral Images,HSI)分类中的处理速度、精度、降低参数量为目标,提出改进的2DCNN模型En-De-2CP-2DCNN。首先,使用1DCNN、2DCNN与3DCNN在Pavia University HSI数据集上分别进行分类实验,对比分析各自优缺点。其次,在保持较快的处理速度和不增加模型参数量的前提下,选择2DCNN为基础模型,参考SegNet的Encode-Decode结构,融入双卷积池化思想进行基础模型改进,同时优化学习策略。结果表明:En-De-2CP-2DCNN模型精度F1-score为99.36%,达到3DCNN的同等水平(99.21%),较改进前(97.25%)提升2.11%;处理速度(7s/epoch)和1DCNN位于同一量级,快于3DCNN(100s/epoch);参数量(3.66 MB)虽高于3DCNN(318 KB),但远低于1DCNN(19.3 MB)。基本实现遥感高光谱图像处理精准、快速和轻量化的目标,为遥感图像的自动化处理及提供了技术支撑。特别是在处理速度和参数量方面的改进,有利于进一步实现移动端的轻量化部署。

    Abstract:

    ABSRTACT: Aiming at the problems of high time cost, labor cost and low efficiency in traditional remote sensing image processing, and aiming at improving the processing speed, accuracy and reducing the number of parameters in the classification of remote sensing hyperspectral images (HSI), an improved 2DCNN model En-De-2CP-2DCNN is proposed.Firstly, 1DCNN, 2DCNN and 3DCNN were used to carry out classification experiments on the Pavia University HSI dataset, and the advantages and disadvantages of each were compared and analyzed.Secondly, under the premise of maintaining fast processing speed and not increasing the number of model parameters, 2DCNN is selected as the basic model, referring to the Encode-Decode structure of SegNet, and integrating the idea of double convolutional pooling to improve the basic model and optimize the learning strategy.The results show that the accuracy F1-score of the En-De-2CP-2DCNN model is 99.36%, which reaches the same level as 3DCNN (99.21%), which is 2.11% higher than that before the improvement (97.25%). The processing speed (7s/epoch) and 1DCNN are in the same order of magnitude, faster than 3DCNN (100s/epoch); The amount of parameters (3.66 MB) is higher than 3DCNN (318 KB), but much lower than 1DCNN (19.3 MB).It basically realizes the goal of accurate, fast and lightweight remote sensing hyperspectral image processing, and provides technical support for the automatic processing of remote sensing images.In particular, the improvement in processing speed and parameter amount is conducive to further realizing the lightweight deployment of mobile terminals..

    参考文献
    相似文献
    引证文献
引用本文

赵章红,张 丹,胡 昊,陈 琳,常升龙.基于改进2DCNN的高光谱遥感图像处理研究[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-09
  • 最后修改日期:2023-09-28
  • 录用日期:2023-10-11
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司