自适应下垂系数的孤岛微电网无功均分策略
作者:
作者单位:

西安科技大学 电气与控制工程学院

基金项目:

陕西省自然科学基础研究计划面上项目(2023-JC-YB-308)


Adaptive Droop Coefficient-Based Reactive Power Sharing Strategy for Islanded Microgrid
Author:
Affiliation:

School of Electrical and Control Engineering, Xi’an university of science and technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在孤岛微电网中,由于线路阻抗的不匹配,导致了传统的下垂控制无法完成分布式电源(DG, distributed generation)之间无功功率的均分。为了消除DG之间的无功不均分并且提高控制器的灵活性和可靠性,文中首先分析了传统下垂无法完成无功均分的原因,设计了可自适应调节的无功下垂系数,使无功下垂系数可以满足无功均分的条件,从而解决了无功功率无法均分的问题。其次为了使无功均分控制器具有更高的灵活性和可靠性,设计了动态分布式观测器,并证明了其的收敛性。动态分布式观测器可以使DG以分布式的方式更加灵活可靠的获取所需的信息。最后在4个不同的算例下对所提的控制策略进行了验证,仿真结果表明了所提控制策略的优越性和有效性。

    Abstract:

    In the islanded microgrid, the mismatch in line impedance hinders the traditional droop control from achieving an equal distribution of reactive power among distributed generation (DG) sources. To achieve reactive power sharing among DG sources and enhance the flexibility and reliability of the controller, the paper first analyzes the reasons behind the failure of traditional droop control in achieving reactive power sharing and proposes an adaptive droop coefficient that can be dynamically adjusted to meet the conditions for reactive power sharing, thus resolving the issue of unequal reactive power distribution. Additionally, to enhance the flexibility and reliability of the reactive power sharing controller, a dynamic distributed observer is designed and its convergence is proven. The dynamic distributed observer allows DG sources to obtain the necessary information in a flexible and reliable manner in a distributed fashion. Finally, the proposed control strategy is validated through simulations in four different scenarios, demonstrating its superiority and effectiveness.

    参考文献
    [1] 王波, 张占营, 张霄, 席晟哲, 邓锦, 米阳. 直流微电网分布式储能系统精确电流分配策略[J]. 中国电力, 2022, 55(8): 96-103,112.ANG Bo, ZHANG Zhanying, ZHANG Xiao, XI Shengzhe, DENG Jin, MI Yang. Accurate Current Sharing Strategy for Distributed Energy Storage System in DC Microgrids[J]. Electric Power, 2022, 55(8): 96-103,112.
    [2] 王凌云, 周璇卿, 李升, 等.基于改进功率环的微电网对等控制策略研究[J].中国电力, 2017, 50(09): 171-177.ANG Lingyun, ZHOU Xuanqing, LI Sheng, et al. Research on peer to peer control strategy for microgrid based on the improved power loop[J]. Electric Power, 2017, 50(09): 171-177.
    [3] 米阳, 宋根新, 宋元元, 等. 孤岛交直流混合微电网群多级功率管理策略[J]. 电力系统自动化, 2020, 44(7): 38-45.I Yang, SONG Genxin, SONG Yuanyuan, et al. Strategy ofmulti-level power management for islanded AC/DC hybridmicrogrid cluster[J]. Automation of Electric Power Systems, 2020, 44(7): 38-45.
    [4] 张宇, 王洪希, 王璞. 交直流混合微电网互联变流器微分平坦控制[J]. 中国电力, 2022, 55(7): 102-109,120.HANG Yu, WANG Hongxi, WANG Pu. Flatness-Based Control of AC / DC Hybrid Microgrid Interconnected Converter[J]. Electric Power, 2022, 55(7): 102-109,120.
    [5] 董杰, 李领南, 张纯江, 等. 微电网中的有功功率和无功功率均分控制[J].电力系统自动化, 2016 , 40(10): 90-96.ONG Jie, LI Lingnan, Zhang Chunjiang, et al.Sharing control of active power and reactive power in microgrids[J]. Automation of Electric Power Systems, 2016, 40(10): 90-96.
    [6] Qi Y, Fang J and Tang T. Utilizing the Dead-Time Effect to Achieve Decentralized Reactive Power Sharing in Islanded AC Microgrids[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(3): 2350-2361.
    [7] He J and Li Y. W. Analysis, Design, and Implementation of Virtual Impedance for Power Electronics Interfaced Distributed Generation[J]. IEEE Transactions on Industry Applications, 2011, 47(6): 2525-2538.
    [8] Wang K, Yuan X, Geng Y, and Wu X. A Practical Structure and Control for Reactive Power Sharing in Microgrid[J]. IEEE Transactions on Smart Grid, 2019, 10(2): 1880-1888.
    [9] Sellamna H, Pavan A. M, Mellit A and Guerrero J. M. An iterative adaptive virtual impedance loop for reactive power sharing in islanded meshed microgrids[J]. Sustainable Energy, Grids and Networks, 2020, 24: 100395.
    [10] Wu X, Shen C and Iravani R. Feasible Range and Optimal Value of the Virtual Impedance for Droop-Based Control of Microgrids[J].? IEEE Transactions on Smart Grid, 2017, 8(3):1242-1251.
    [11] Mohammed N, Lashab A, Ciobotaru M and Guerrero J. M. Accurate Reactive Power Sharing Strategy for Droop-Based Islanded AC Microgrids[J]. IEEE Transactions on Industrial Electronics, 2023, 70(3): 2696-2707.
    [12] An R, Liu Z and Liu J. Successive-Approximation-Based Virtual Impedance Tuning Method for Accurate Reactive Power Sharing in Islanded Microgrids[J]. IEEE Transactions on Power Electronics, 2021, 36(1): 87-102.
    [13] Lu J, Zhao M, Golestan S, Dragicevic T, Pan X, and Guerrero J. M. Distributed Event-Triggered Control for Reactive, Unbalanced, and Harmonic Power Sharing in Islanded AC Microgrids[J]. IEEE Transactions on Industrial Electronics, 2022, 69(2): 1548-1560.
    [14] 陈晓祺, 贾宏杰, 陈硕翼, 等. 基于线路阻抗辨识的微电网无功均分改进下垂控制策略[J]. 高电压技术, 2017, 43(04): 1271-1279.HEN Xiaoqi, JIA Hongjie, CHEN Shuoyi, et al. Improved Droop Control Strategy Based on Line Impedance Identification for Reactive Power Sharing in Microgrid[J]. High Voltage Engineering, 2017, 43(04): 1271-1279.
    [15] Gupta Y, Parganiha N, Rathore A. K, and Doolla S. An Improved Reactive Power Sharing Method for an Islanded Microgrid[J]. IEEE Transactions on Industry Applications, 2021, 57(3): 2954-2963.
    [16] Minetti M, Rosini A, Denegri G. B, Bonfiglio A and Procopio R. An Advanced Droop Control Strategy for Reactive Power Assessment in Islanded Microgrids[J]. IEEE Transactions on Power Systems, 2022, 37(4): 3014-3025.
    [17] 罗朝旭, 刘洋, 罗钦等. 基于动态下垂系数的低压微电网无功控制策略[J].电力建设, 2022, 43(01): 78-86.UO Zhaoxu, LIU Yang, LUO Qin, QIN Jianheng. Reactive Power Control Strategy of Low-Voltage Microgrid Applying Dynamic Droop Coefficient[J] Electric Power Construction. 2022, 43(01): 78-86.
    [18] 米阳, 蔡杭谊, 宋元元, 李振坤. 基于同步补偿的孤岛微电网无功均分研究[J]. 电工技术学报, 2019, 34(09): 1934-1943.i Yang, Cai Hangyi, Song Yuanyuan, Li Zhenkun. Study on Reactive Power Sharing of Island Microgrid Based on Synchronous Compensation[J]. Transactions of China Electrotechnical Society, 2019, 34(09): 1934-1943.
    [19] Gupta Y, Chatterjee K, and Doolla S. A Simple Control Scheme for Improving Reactive Power Sharing in Islanded Microgrid[J]. IEEE Transactions on Power Systems, 2020, 35(4): 3158-3169.
    [20] 颜丽, 米阳, 孙威等. 基于改进下垂控制的孤岛交流微电网无功分配研究[J]. 太阳能学报, 2021, 42(08): 7-15.AN Li, MI Yang, SUN Wei et al. Reactive Power Distribution Control Strategy in Islanded AC Microgrid Based on Improved Droop Control[J] ACTA ENERGIAE SOLARIS SINICA, 2021, 42(08): 7-15.
    [21] Y Xu, W Liu. Novel multiagent based load restoration algorithm for microgrids [J]. IEEE Trans. Smart Grid, 2011, 3(2): 152-161.
    [22] 张小莲,石春晖,郝思鹏等.基于动态一致性算法的微电网无功功率分布式二级控制策略[J]. 可再生能源, 2022, 40(03): 368-376.Zhang Xiaolian, Shi Chunhui, Hao Sipeng, et al. Distributed secondary reactive power control strategy of microgrid based on dynamic consensus algorithm [J]. Renewable Energy Resources, 2022, 40(03): 368-376.<
    [23] Yulin C, Donglian Q, Chaoyong L. Distributed Dynamic Averaging Tracking Without Rate Measurements[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems,2019,51(7): 4359-4364.
    相似文献
    引证文献
    引证文献 [0]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

程勇,成琦,姚磊茹,赵建文.自适应下垂系数的孤岛微电网无功均分策略[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:92
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-07-26
  • 最后修改日期:2023-09-01
  • 录用日期:2023-09-04

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司