CO2浓度缓增和氮肥减施对冬小麦田N2O排放的影响
作者单位:

1.南京信息工程大学;2.河南省气象科学研究所

基金项目:

国家自然科学基金(42071023,41775152)


Effects of Gradually Elevated CO2 Concentration and Nitrogen Application on N2O Emission in Winter-wheat Field
Author:
Affiliation:

1.School of Applied Meteorology,Nanjing University of Information Science Technology;2.Henan Institute of Meteorological Science,Key Laboratory of Agrometeorological Support and Applied Technique,China Meteorological Administration

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为探明麦田氧化亚氮(N2O)排放对二氧化碳(CO2)浓度缓增与氮肥减施的响应,选用扬麦22为试验材料,基于开顶式气室(OTC)构成的CO2浓度自动控制平台开展田间试验。在环境大气CO2浓度(AC,对照)的基础上设置CO2浓度缓增处理(EC,自2016-2017年冬小麦生长季起在AC基础上逐年增加40 μmol.mol-1,至2018-2019年生长季CO2浓度比AC高120 μmol.mol-1);在常规施氮量(N1,25 g.m-2)基础上设置氮肥减施处理(N2,15 g.m-2)。使用静态暗箱-气相色谱法进行冬小麦田N2O的气样采集与通量测定。结果表明:冬小麦生育期内,不同CO2浓度与氮肥水平下冬小麦田N2O通量生长季变化较为一致,整体均呈现为波动下降特征。AC处理下,与N1处理相比,N2处理使得N2O累积排放量显著降低45.2%(P=0.004);EC处理下不同氮肥水平对冬小麦田N2O排放无显著影响。在冬小麦孕穗至乳熟期时,氮肥减施处理对麦田N2O排放的影响较为明显。CO2浓度缓增与氮肥减施共同作用时,施氮量是影响麦田N2O排放量的主要因素。

    Abstract:

    To investigate the response of N2O emission to the gradually elevated CO2 concentration and the reduction of nitrogen addition in wheat fields, we conducted field experiments using Yangmai 22 as the experimental material. The experiments were carried out on a field equipped with an open-top gas chamber, forming an automatic CO2 concentration control platform. This setup allowed us to carefully monitor and control the CO2 levels throughout the experiment. A gradually elevated CO2 concentration (EC, an increase of 40 μmol.mol-1 year by year from 2016-2017 wheat growing season until 120 μmol.mol-1 in 2018-2019 growing season) was set up, compared to the ambient atmospheric CO2 concentration (AC). The amount of nitrogen fertilizer were set as the conventional nitrogen addition (N1, 25 g.m-2) and the reduction treatment (N2, 15 g.m-2). The sampling and flux determination of N2O were carried out by static camera obscura gas chromatography in wheat field. The results indicated that throughout the winter wheat growing period, the trend of N2O emission under different CO2 concentration and nitrogen fertilizer treatment was consistent, and the overall trend showed a fluctuating decline. The impact of gradually elevated CO2 concentration on N2O emission was found to be not significant during the winter wheat growing season. The nitrogen reduction treatment has shown effective in reducing N2O emission in wheat fields, resulting in a significant reduction of cumulative N2O emission by 45.2% (p=0.004) under atmospheric CO2 concentration. The impact of nitrogen reduction treatment on N2O emission was evident in winter wheat from the booting to milking stage. Under the combined effect of gradually elevated CO2 concentration and reduction of nitrogen fertilizer addition, nitrogen addition is the main factor affecting N2O emission in wheat fields.

    参考文献
    [1] 姜克隽. IPCC AR6:长期减排路径[J].气候变化研究进展, 2023, 19(02): 133-138.JIANG KeJun. AR6 WGIII report: long-term mitigation pathways [J]. Climate Change Research, 2023, 19 (2): 133-138
    [2] Denman K L. Couplings between changes in the climate system and biogeochemistry[J]. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007.
    [3] 张玉铭, 胡春胜, 张佳宝, 等.农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展[J]. 中国生态农业学报, 2011, 19(04): 966-975.HANG Yuming, HU Chunsheng, ZHANG Jiabao, et al. Research advances on source/sink intensities and greenhouse effects of CO2, CH4 and N2O in agricultural soils[J]. Chinese Journal of Eco-Agriculture, 2011, 19(04): 966-975.
    [4] 范靖尉, 白晋华, 任寰宇, 等. 减氮和施生物炭对华北夏玉米-冬小麦田土壤CO2和N2O排放的影响[J]. 中国农业气象, 2016, 37(02): 121-130.AN Jingwei, BAI Jinhua, REN Huanyu, et al. Effects of reducing nitrogen and biochar application on CO2 and N2O emissions from summer maize-winter wheat field in north China[J]. Chinese Journal of Agrometeorology, 2016, 37(02): 121-130.
    [5] Yao Z, Wang R, Zheng X, et al. Elevated atmospheric CO2 reduces yield-scaled N2O fluxes from subtropical rice systems: Six site‐years field experiments[J]. Global Change Biology, 2021, 27(2): 327-339.
    [6] 王从, 李舒清, 刘树伟, 等.大气CO2浓度和温度升高对稻麦轮作生态系统N2O排放的影响[J]. 中国农业科学, 2018, 51(13): 2535-2550.ANG Cong, LI Suqing, LIU Shuwei, et al. Response of N2O emissions to elevated atmospheric CO2 concentration and temperature in rice-wheat rotation agroecosystem. Scientia Agricultura Sinica, 2018, 51(13): 2535-2550.
    [7] 徐仲均, 郑循华, 王跃思, 等. 开放式空气CO2增高对稻田CH4和N2O排放的影响[J]. 应用生态学报, 2002(10): 1245-1248.U Zongjun, ZHENG Xunhua, WANG Yuesi, et al. Effects of elevated atmospheric CO2 on CH4 and N2O emissions from paddy fields. Chinese Journal of Applied Ecology, 2002(10): 1245-1248.
    [8] 朱兆良. 合理使用化肥充分利用有机肥发展环境友好的施肥体系[J]. 中国科学院院刊, 2003(02): 89-93.HU Zhaoliang. Fertilizer Management strategies for the harmonization of agriculture development with environment protection[J]. Bulletin of Chinese Academy of Sciences, 2003(02): 89-93.
    [9] Qiu W, Liu J, Li B, et al. N2O and CO2 emissions from a dryland wheat cropping system with long-term N fertilization and their relationships with soil C, N, and bacterial community[J]. Environmental Science and Pollution Research, 2020, 27: 8673-8683.
    [10] LIU Y, LI Y, PENG Z, et al. Effects of different nitrogen fertilizer management practices on wheat yields and N2O emissions from wheat fields in North China[J]. Journal of Integrative Agriculture, 2015, 14(6): 1184-1191.
    [11] Davidson E A, Keller M, Erickson H E, et al. Testing a conceptual model of soil emissions of nitrous and nitric oxides: using two functions based on soil nitrogen availability and soil water content, the hole-in-the-pipe model characterizes a large fraction of the observed variation of nitric oxide and nitrous oxide emissions from soils[J]. Bioscience, 2000, 50(8): 667-680.
    [12] Norton J, Ouyang Y. Controls and adaptive management of nitrification in agricultural soils[J]. Frontiers in Microbiology, 2019: 1931.
    [13] Scheer C, Fuchs K, Pelster D E, et al. Estimating global terrestrial denitrification from measured N2O:(N2O+N2) product ratios[J]. Current Opinion in Environmental Sustainability, 2020, 47: 72-80.
    [14] Plaza-Bonilla D, álvaro-Fuentes J, Arrúe L J, et al. Tillage and nitrogen fertilization effects on nitrous oxide yield-scaled emissions in a rainfed Mediterranean area[J]. Agriculture, Ecosystems and Environment, 2014, 189: 43-52.
    [15] Yuesi W, Yinghong W. Quick measurement of CH4, CO2 and N2O emissions from a short-plant ecosystem[J]. Advances in Atmospheric Sciences, 2003, 20(5): 842-844.
    [16] Han F, Guo R, Hussain S, et al. Rotation of planting strips and reduction in nitrogen fertilizer application can reduce nitrogen loss and optimize its balance in maize–peanut intercropping[J]. European Journal of Agronomy, 2023, 143: 126707.
    [17] Vitousek P M, Naylor R, Crews T, et al. Nutrient imbalances in agricultural development[J]. Science, 2009, 324(5934): 1519-1520.
    [18] Dawson C J, Hilton J. Fertiliser availability in a resource-limited world: Production and recycling of nitrogen and phosphorus[J]. Food Policy, 2011, 36: S14-S22.
    [19] Liu C, Ren D, Liu H, et al. Optimizing nitrogen management diminished reactive nitrogen loss and acquired optimal net ecosystem economic benefit in a wheat-maize rotation system[J]. Journal of Cleaner Production, 2022, 331: 129964.
    [20] 刘超, 胡正华, 陈健, 等. 不同CO2浓度升高水平对水稻光合特性的影响[J]. 生态环境学报, 2018, 27(02): 246-254.IU Chao, HU Zhenghua, CHEN Jian, et al. Effects of elevated CO2 concentration levels on photosynthetic characteristics of rice [J]. Ecology and Environmental Sciences,2018, 27(02): 246-254.
    [21] 陈津赛, 孙玮皓, 王广帅, 等. 不同施氮量对麦田土壤水稳性团聚体和N2O排放的影响[J]. 应用生态学报, 2021, 32(11): 3961-3968.HEN Jinsai, SUN Weihao, WANG Guangshuai, er al. Effects of different nitrogen application rates on soil water stable aggregates and N2O emission in winter wheat field[J]. Chinese Journal of Applied Ecology, 2021, 32(11): 3961-3968.
    [22] Ye R W, Averill B A, Tiedje J M. Denitrification: production and consumption of nitric oxide[J]. Applied and Environmental Microbiology, 1994, 60(4): 1053-1058.
    [23] 张志勇, 于旭昊, 熊淑萍, 等. 耕作方式与氮肥减施对黄褐土麦田土壤酶活性及温室气体排放的影响[J]. 农业环境科学学报, 2020, 39(02): 418-428.HANG Zhiyong, YU Xuhao, XIONG Shuping, et al. Effects of tillage methods and nitrogen fertilizer reduction on soil enzyme activities and greenhouse gas emissions of wheat yellow cinnamon soil[J]. Journal of Agro-Environment Science, 2020, 39(02):418-428.
    [24] 于海洋, 王天宇, 黄琼, 等. CO2浓度升高对稻田CH4和N2O排放的影响——Meta分析[J]. 中国科学:地球科学, 2022, 52(03): 517-527.U Haiyang, WANG Tianyu, HUANG Qiong, et al. Effects of elevated CO2 concentration on CH4 and N2O emissions from paddy fields: A meta-analysis[J]. Science China Earth Sciences, 2022, 52(03): 517-527.
    [25] Ineson P, Coward P A, Hartwig U A. Soil gas fluxes of N2O, CH4 and CO2 beneath Lolium perenne under elevated CO2: the Swiss free air carbon dioxide enrichment experiment[J]. Plant and Soil, 1998, 198(1): 89-95.
    [26] 封克, 王子波, 王小治, 等. 土壤pH对硝酸根还原过程中N2O产生的影响[J]. 土壤学报, 2004, 41(01): 81-86.ENG Ke, WANG Zibo, WANG Xiaozhi, et al. Effect of soil pH on N2O production in nitrate reduction[J]. Acta Pedologica Sinica, 2004, 41(01): 81-86.
    [27] 梁东丽, 同延安, Ove Emteryd, 等. 塿土土壤剖面中N2O浓度的时间和空间变异[J]. 生态学报, 2003, 23(04): 731-737.IANG Dongli, TONG Yanan, Ove Emteryd, et al. Spatial and temporal variation of nitrous oxide concentrations in soil profiles of Manural Loessial Soil[J]. Acta Ecologica Sinica, 2003, 23(04): 731-737.
    [28] 曾科, 王书伟, 朱文彬, 等. 施氮方式与添加脲酶/硝化抑制剂对稻季NH3挥发和N2O排放的影响[J]. 植物营养与肥料学报, 2023, 29(02): 220-231.HEN Ke, WANG Shuwei, ZHU Wenbin, et al. Effects of nitrogen application methods combined with urease/nitrification inhibitor on decreasing NH3 volatilization and N2O emission in rice season[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(02): 220-231.
    [29] Shcherbak I, Millar N, Robertson G P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen[J]. Proceedings of the National Academy of Sciences, 2014, 111(25): 9199-9204.
    [30] 马兴华, 于振文, 梁晓芳, 等. 施氮量和底施追施比例对土壤硝态氮和铵态氮含量时空变化的影响[J]. 应用生态学报, 2006(04): 4630-4634.A Xinghua, YU Zhenwen, LIANG Xiaofang, et al. Effects of nitrogen application rate and its basal-/top-dressing ratio on spatio-temporal variations of soil NO3--N and NH4+-N contents[J]. Chinese Journal of Applied Ecology, 2006(04): 4630-4634.
    [31] 周慧, 史海滨, 郭珈玮, 等. 有机无机肥配施对不同程度盐渍土N2O排放的影响[J]. 环境科学, 2020, 41(08): 3811-3821.HOU Hui, SHI Haibin, GUO Jiawei, et al. Effects of the combined application of organic and inorganic fertilizers on N2O emissions from saline soil[J]. Environmental Science, 2020, 41(08): 3811-3821.
    [32] 李明, 李迎春, 韩雪, 等. 大气CO2浓度升高和氮肥互作对玉米花后功能叶碳氮同化物的影响[J]. 中国农业气象, 2021, 42(09): 715-728.I Ming, LI Yingchun, HAN Xue, et al. Effects of Elevated Atmospheric CO2 Concentration and nitrogen application on mass fractions of carbon and nitrogen assimilates in functional leaves of maize after flowering[J]. Chinese Journal of Agrometeorology, 2021, 42(09): 715-728.
    [33] 党慧慧, 刘超, 夏晔, 等. 不同CO2浓度和施氮水平对麦田CO2净通量的影响[J]. 南京信息工程大学学报(自然科学版), 2022, 14(01): 77-87.ANG Huihui, LIU Chao, XIA Ye, et al. Effect of different elevated CO2 concentrations and nitrogen application on net CO2 fluxes in wheat field[J]. Journal of Nanjing University of Information Science Technology(Natural Science Edition), 2022, 14(01): 77-87.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

帅斯樑,武熳秋,商东耀,刘淼,曹琰梅,柯浩楠,胡正华,李琪. CO2浓度缓增和氮肥减施对冬小麦田N2O排放的影响[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:145
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-07-22
  • 最后修改日期:2023-09-04
  • 录用日期:2023-09-05

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司