基于I_CBAM-DenseNet模型的小麦发育期识别研究
DOI:
作者:
作者单位:

1.南京信息工程大学;2.中国气象局气象探测中心

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(51305210);江苏省自然科学基金 (BK20150924)


Research on wheat development stage recognition based on I_CBAM-DenseNet model
Author:
Affiliation:

Nanjing University of Information Science and Technology

Fund Project:

National Natural Science Foundation of China (51305210);Jiangsu Provincial Natural Science Foundation Project(BK20150924)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对我国农作物发育期人工观测效率低、识别准确率低等问题,提出一种基于I_CBAM-DenseNet模型的小麦发育期识别方法。该方法以密集连接卷积网络(DenseNet)为主干提取网络,融入卷积注意力模块CBAM。先将CBAM中的空间注意力模块(SAM)与通道注意力模块(CAM)由传统的串联连接改为并行连接,并将改进的CBAM(I_CBAM)插入到DenseNet最后一个密集网络中,构建一种I_CBAM-DenseNet模型,再选取小麦7个重要发育时期进行自动识别。为最大化提取小麦的特征信息,将超绿特征(ExG)因子和最大类间方差法(Otsu)相结合对采集到的小麦图像进行分割处理。对比分析了I_CBAM-DenseNet、AlexNet、ResNet 、DenseNet、CBAM-DenseNet以及VGG等模型的准确率和损失值的变化。结果表明,采取基于I_CBAM-DenseNet的卷积神经网络建立的模型,准确率达到99.64%,高于对比模型。

    Abstract:

    Aiming at the problems of low efficiency of manual observation and low recognition accuracy of crop development stage in China, a wheat development stage recognition method based on I_CBAM-DenseNet model is proposed. The method takes a dense connected convolutional network (DenseNet) as the backbone extraction network and incorporates a convolutional attention module CBAM. firstly, the spatial attention module (SAM) and channel attention module (CAM) in CBAM are changed from the traditional serial connection to parallel connection, and the improved CBAM (I_CBAM) is inserted into the last dense network of DenseNet. An I_CBAM-DenseNet model is constructed, and then seven important development periods of wheat are selected for automatic identification. In order to maximize the extraction of the feature information of wheat, the ultra-green feature of ExG factor and the the maximum inter-class variance method are combined to segment the acquired wheat images. The changes in accuracy and loss values of the models I_CBAM-DenseNet, AlexNet, ResNet, DenseNet, CBAM-DenseNet and VGG are comparatively analysed. The results show that the model built by taking the convolutional neural network based on I_CBAM-DenseNet has an accuracy of 99.64%, which is higher than the comparison models.

    参考文献
    相似文献
    引证文献
引用本文

付景枝,马悦,宏观,刘云平,吴文宇,丁明明,尹泽凡.基于I_CBAM-DenseNet模型的小麦发育期识别研究[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-07-22
  • 最后修改日期:2023-09-11
  • 录用日期:2023-09-15
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司