基于多特征交互和密集残差的图像去雨
DOI:
作者:
作者单位:

沈阳理工大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(No.2018YFB1403303);辽宁省教育厅高等学校基本科研项目(LJKMZ20220615)


Image rain removal based on multi-feature interaction and dense residual
Author:
Affiliation:

Shenyang Ligong University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对雨天环境下获取图像质量差,导致后续机器视觉任务效率低下的问题,提出一种基于多特征交互和密集残差的图像去雨算法。首先,提出多重特征交互卷积模块提取不同空间下雨线的语义特征,增强信息利用程度;其次,构建多维空间权重注意模块,将不同空间信息权重初步融合并增强雨线特征;然后,结合密集连接和残差网络的优点,设计一种密集残差融合模块,在提高网络学习能力的同时实现对信息的重复利用,进一步校正雨纹信息;最后,通过将多种损失函数的线性组合,并结合雨天成像模型提高输出图像质量。在多个公开数据集上的实验结果表明,所提算法的主客观评价指标均优于所对比的经典及新颖算法,在去除雨纹的同时更有效地保留图像背景细节信息,为后续基于机器视觉任务的有效开展打下基础。

    Abstract:

    In order to solve the problem that the poor image quality leads to the low efficiency of subsequent machine vision tasks in rainy days, an image rain removal algorithm based on multi-feature interaction and dense residual is proposed. Firstly, a multi-feature interactive convolution module is proposed to extract the semantic features of rain lines in different spaces in order to improve the utilization of information. Secondly, a multi-dimensional spatial weight concern module is constructed, and the weights of different spatial information are preliminarily integrated to enhance the characteristics of rain lines. Then combining the advantages of dense connection and residual network, a dense residual fusion module is designed, which improves the learning ability of the network, realizes the reuse of information, and further correct the rain information. Finally, through the linear combination of various loss functions and rainy day imaging model, the output image quality is improved. Experimental results on several public data sets show that the subjective and objective evaluation indexes of the algorithm are better than those of the classical algorithm and novel algorithms, and the detailed information of the image background can be preserved more effectively while removing the rain pattern, which lays a foundation for the effective development of subsequent tasks based on machine vision.

    参考文献
    相似文献
    引证文献
引用本文

林森,邱庆澳.基于多特征交互和密集残差的图像去雨[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-07-18
  • 最后修改日期:2023-08-26
  • 录用日期:2023-08-29
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司