基于改进U2-Net网络的多裂肌MRI图像分割算法研究
DOI:
作者:
作者单位:

1.桂林电子科技大学 计算机与信息安全学院;2.柳州市人民医院

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学(61866009,42164002);广西重点研发计划项目 AB21220037;广西科技计划项目(基地和人才专项)(桂科AD20325004);桂林市科学研究与技术开发项目(20210227-2)


Research on MRI image segmentation algorithm for multifidus muscle based on improved U2-Net network
Author:
Affiliation:

1.School of Computer Science and Engineering,Guilin University of Electronic Technology;2.Department of Spinal Surgery,Liuzhou People'3.'4.s Hospital

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对腰间盘突出患者MRI图像多裂肌病变部位分割精度较低的问题,提出了一种改进的U2-Net网络的新模型,目标是编码和解码的子网络通过一个系列嵌套的跳跃路径来相互连接,这种重新设计的跳跃连接主要是用来降低编码解码子网络中特征图的语义缺失。基于此目的重新设计U2-Net模型中RSU-7,RSU-6,RSU-5,RSU-4中间的跳跃连接,RSU-4F部分不变。此外,为了提取到高质量的多裂肌特征,还加入了通道注意力模块,通过学习每个通道的权重,使网络能够更好地关注对任务有贡献的通道,从而提升模型的性能。为验证模型的有效性,在多裂肌MRI图像数据集上进行实验,发现相较于U-Net、U2-Net、U-Net++网络结构,MIOU、DICE、HD均有提升。实验结果表明,本文提出的算法对于多裂肌的MRI图像分割有较好的效果,能够辅助医生对病情做出判断。

    Abstract:

    To address the problem of low segmentation accuracy of multifracture muscle lesion sites in MRI images of patients with lumbar disc herniation, this paper proposes a new model to improve the U2net network with the goal that the encoding and decoding subnetworks are interconnected by a series of nested jump paths, and this redesigned jump connection is mainly used to reduce the semantic missing of feature maps in the encoding and decoding subnetworks. For this purpose, the jump connections in the middle of RSU-7, RSU-6,RSU-5,RSU-4 in the U2Net model are redesigned, and the RSU-4F part remains unchanged. In addition, the channel attention module was added to extract high quality multifractal muscle features, which effectively helps information flow in the network by using an attention mechanism to increase expressiveness, focus on important features and suppress unnecessary features. To verify the effectiveness of the model, experiments are conducted on the multi-cleft muscle MRI image dataset, and it is found that MIOU, DICE, and HD are improved compared with U-Net, U2-Net, and U-Net++ network structures. The experimental results show that the algorithm proposed in this paper has a good effect on MRI image segmentation of multifidus muscle, which can assist doctors to make judgments on the condition.

    参考文献
    相似文献
    引证文献
引用本文

王子民,周悦,关挺强,郭欣,胡巍,王茂发.基于改进U2-Net网络的多裂肌MRI图像分割算法研究[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-07-17
  • 最后修改日期:2023-10-22
  • 录用日期:2023-10-27
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司