形状特征向量筛选与局部粗糙度结合的国省干道点云提取
DOI:
作者:
作者单位:

1.河南省交通事业发展中心;2.国交空间信息技术(北京)有限公司;3.长江大学 地球科学学院

作者简介:

通讯作者:

中图分类号:

基金项目:

城市轨道交通数字化建设与测评技术国家工程实验室开放课题基金资助(2023ZH01);湖南科技大学测绘遥感信息工程湖南省重点实验室开放基金资助(E22205);自然资源部环鄱阳湖区域矿山环境监测与治理重点实验室开放基金资助(MEMI-2021-2022-08)


National and provincial highways point cloud extraction based on the combination of shape feature vector filtering and local roughness
Author:
Affiliation:

1.Transportation Development Center of Henan Province;2.Guojiao Spatial Information Technology (Beijing) Co.,Ltd.;3.School of Geosciences, Yangtze University;4.Guojiao Spatial Information Technology (Beijing) Co.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对国省干道缺少路缘石导致在点云场景中不易确定公路边缘,从而造成国省干道点云难以精确提取的问题,提出形状特征向量筛选与局部粗糙度结合的国省干道点云提取方法。首先对原始点云数据构建网格索引,以网格为基本单元,设计基于协方差矩阵的形状特征向量分析方法,据此方法计算单元内点云形状特征向量,构建正交基求解特征值,筛选获取地面点云;其次采用KD树索引重构地面点云,计算分析点云局部粗糙度,以先验阈值为参考,引入欧式聚类算法实现对路面及路面周边点云的有效提取,实现路面点与非路面点有效划分。对10 km移动激光扫描国省干道点云数据进行测试,平均精度和召回率分别99.64%与99.59%。与欧式聚类分割算法相比,所提算法的平均精度及F1-score分别提高8.95%、4.56%,对原始点云处理速度为32.4 km/h,计算效率明显提升,具有良好的路面提取精度和鲁棒性。

    Abstract:

    The lack of curbstones on the national and provincial highways makes it challenging to determine the edges of highways in point cloud scenarios, making it difficult to extract point clouds on national and provincial highways accurately. Therefore, a method for extracting point clouds on national and provincial highways is proposed by combining shape feature vector screening with local roughness. Firstly, a grid index is constructed for the original point cloud data. Based on the grid as the basic unit, a shape feature vector analysis method based on a covariance matrix is designed. Based on this method, the shape feature vectors of the point cloud within the unit are calculated, and an orthogonal basis is constructed to solve the feature values, filtering and obtaining the ground point cloud. Secondly, the KD tree index is used to reconstruct the ground point cloud, and the local roughness of the point cloud is calculated and analyzed. Based on a prior threshold of roughness, the Euclidean clustering algorithm is introduced to extract the point cloud of the road surface and its surrounding areas; Implement effective division between road points and non-road points. Testing point cloud data on 10 km mobile laser scanning of national and provincial main roads showed an average accuracy of 99.64% and a recall rate of 99.59%, respectively. Compared with the European clustering segmentation algorithm, it has improved the average accuracy and F1-score by 8.95% and 4.56%, respectively. Regarding computational efficiency, the algorithm has a processing speed of 32.4 km/h for the original point cloud, significantly improving efficiency, and has good road surface extraction accuracy and robustness.

    参考文献
    相似文献
    引证文献
引用本文

靳明,殷佩轩,李玉舟,李木子,王娟,高贤君,许高程,刘用.形状特征向量筛选与局部粗糙度结合的国省干道点云提取[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-25
  • 最后修改日期:2023-08-30
  • 录用日期:2023-08-30
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司