基于可解释机器学习的大型活动场馆周边路网运行状态影响研究
DOI:
作者:
作者单位:

1.北京工业大学 交通工程北京市重点实验室;2.福建省高速公路联网运营有限公司;3.北京市交通运行监测调度中心

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学(No. 52072011)


Research on the Influence of Road Network Operational State Impact Model around Venues for Short Term Large Scale Events Based on Interpretable Machine Learning
Author:
Affiliation:

1.Beijing Key Laboratory of Traffic Engineering,Beijing University of Technology;2.Fujian Expressway Group Co,Ltd Fuzhou;3.Beijing Municipal Transportation Operations Coordination Center

Fund Project:

National Natural Science Foundation of China (52072011)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    举办大型活动会导致周边受影响区域在短时间内集中大量人群和车辆,场馆周边路网与常规交通具有差异化特征。为探究大型活动对场馆周边路网运行状态的影响机理,解析活动规模、路段与活动场馆的空间距离等因素的影响特征,构建融合XGBoost算法与部分依赖图的可解释机器学习模型,以捕捉不同因素的非线性效应与协同影响。研究以北京市为例开展了实证研究,其中单因素的异质性影响表明:路段与活动场馆的空间距离及活动规模对场馆周边路网运行状态的影响较大,其相对重要度分别达到27.1%和25.4%,距离活动开始/结束的时间对场馆周边路网运行状态存在明显非线性特征,在活动开始前30-60分钟,以及活动结束后30分钟内,场馆周边3km以内的路段将受到显著影响;二维因素的协同影响表明:当活动规模大于3万人时,节假日和不利天气对场馆周边路网运行状态呈负面影响,而在降雨和雾霾天气下,场馆周边路网运行状态受时空影响较大,影响范围为活动开始前60分钟与结束后40分钟内距离活动场馆2.5km内的路段。相关研究结论可为大型活动期间道路拥堵致因辨别及制定科学有效的路网管控策略提供定量化的决策依据。

    Abstract:

    The holding of large-scale events will lead to the concentration of a large number of people and vehicles in the surrounding affected areas in a short period of time, and the road network around the venue is differentiated from conventional traffic. To investigate the mechanism of the impact of large events and their characteristics on the operation of the road network around the venues. The study resolved the influence characteristics of factors such as event scale, spatial distance between road sections and event venues, and constructed an interpretable machine learning model integrating XGBoost algorithm and Partial Dependence Plots to capture the nonlinear effects and synergistic influences of different factors. The study conducted an empirical study with Beijing as an example. The heterogeneity of the single factor shows that the spatial distance from the road section to the event venue and the event scale have a greater impact on the operational state of the road network around the venue, with a relative importance of 27.1% and 25.4%, respectively; The time from the start/end of the event has obvious non-linear characteristics on the road network operation status around the venue, and the road sections within 3 km around the venue will be significantly affected within 30-60 minutes before the event starts and 30 minutes after the event ends. The synergistic effect of two-dimensional factors shows that when the scale of the event is larger than 30,000 people, holidays and adverse weather have a negative impact on the running state of the road network around the venue. Meanwhile, it is found that in rain and haze weather, the operation status of the road network around the venue is affected by time and space, and the influence range is the road section within 2.5km from the venue within 60 minutes before the start and 40 minutes after the end of the event. The findings of the study can provide quantitative data support for identifying the causes of road congestion and formulating scientific and effective road network control strategies during large events.

    参考文献
    相似文献
    引证文献
引用本文

吴明珠,冯楷,翁剑成,魏瑞聪,王晶晶,钱慧敏.基于可解释机器学习的大型活动场馆周边路网运行状态影响研究[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-22
  • 最后修改日期:2023-08-09
  • 录用日期:2023-08-10
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司