基于多目标沙猫群算法的含风光储配电网无功优化
DOI:
作者:
作者单位:

西安科技大学电控学院

作者简介:

通讯作者:

中图分类号:

基金项目:


Reactive power optimization of wind/solar power storage and distribution network based on multi-objective sand cat swarm algorithm
Author:
Affiliation:

Xi’an University of Science and Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有智能优化算法在求解配电网无功优化时存在的收敛速度慢、易陷入局部最优解等问题,提出一种基于多目标沙猫群算法(Multi-Objective Sand Cat swarm optimization, MOSCSO)的含风光储配电网无功优化方法。MOSCSO融合了多目标算法中外部储存集的更新和选择机制,具有较好的全局寻优能力,同时沙猫群算法特有的搜索和攻击的种群更新方式保证了其较快收敛速度和较好寻优能力。建立储能设施(Energy Storage System, ESS)作为控制变量的IEEE 33节点系统数学模型,应用MOSCSO进行仿真验证。结果证明本文所提方法在平衡风光发电系统的同时能够做到降低网损和提高电网稳定性,与传统算法进行比较,结果验证了MOSCSO在本文无功优化模型上的有效性和稳定性。

    Abstract:

    A reactive power optimization method for wind and solar power storage and distribution networks based on the Multi Objective Sand Cat swarm optimization (MOSCSO) is proposed to address the problems of slow convergence speed and easy falling into local optima in existing intelligent optimization algorithms for reactive power optimization in distribution networks. MOSCSO integrates the update and selection mechanism of external save sets in multi-objective algorithms, and has good global optimization ability. At the same time, the unique search and attack population update method of the sand cat swarm algorithm ensures its fast convergence speed and good optimization ability. Establish an IEEE 33 node system mathematical model with Energy Storage System (ESS) as the control variable, and apply MOSCSO for simulation verification. The results demonstrate that the proposed method in this paper can reduce grid losses and improve grid stability while balancing the wind and solar power generation system. Compared with traditional algorithms, the results verify the effectiveness and stability of MOSCSO in the reactive power optimization model of this paper.

    参考文献
    相似文献
    引证文献
引用本文

商立群,张少强.基于多目标沙猫群算法的含风光储配电网无功优化[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-21
  • 最后修改日期:2023-08-18
  • 录用日期:2023-08-18
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司