公式章 1 节 1基于CNN-GRU-ISSA-XGBoost的短期光伏功率预测
DOI:
作者:
作者单位:

1.天津理工大学;2.天津市新能源电力变换传输与智能控制重点实验室 天津

作者简介:

通讯作者:

中图分类号:

基金项目:

天津市自然科学基金重点项目(08JCZDJC18600),天津市教委重点基金项目(2006ZD32)


Short term photovoltaic power prediction based on CNN-GRU-ISSA-XGBoost
Author:
Affiliation:

1.Tianjin University of Technology;2.Tianjin Key Laboratory of New Energy Power Conversion,Transmission and Intelligent Control,Tianjin University of Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对光伏功率随机性及波动性大,单一预测模型往往难以准确分析历史数据波动规律,从而导致预测精度不高的问题,提出一种基于卷积神经网络-门控循环单元(Convolutional Neural Network- Gated Recurrent Unit,CNN-GRU)和改进麻雀搜索算法(improved sparrow search algorithm,ISSA)优化的极限梯度提升(Xtreme Gradient Boosting,XGBoost)模型的短期光伏功率预测组合模型。首先去除历史数据中的异常值并对其进行归一化处理,利用主成分分析法(Principal Component Analysis,PCA)进行特征选取,以便更好地识别影响光伏功率的关键因素。然后采用CNN网络提取数据的空间特征,再经过GRU网络提取时间特征,针对XGBoost模型手动配置参数困难、随机性大的问题,利用ISSA对模型超参数寻优。最后对两种方法预测的结果用误差倒数法减小误差同时对权重进行更新,得到新的预测值完成对光伏功率的预测。实验结果表明,所提出的CNN-GRU-ISSA-XGBoost组合模型具有更强的适应性和更高的精度。

    Abstract:

    In order to address the high randomness and volatility of photovoltaic power, a single prediction model often struggles to accurately analyze the fluctuation patterns in historical data, resulting in low prediction accuracy. To overcome this issue, a combined model for short-term PV power prediction is proposed, which incorporates Convolutional Neural Network-Gated Recurrent Unit (CNN-GRU) and an improved Sparrow Search Algorithm (ISSA) for optimizing the Xtreme Gradient Boosting (XGBoost) model. First, remove the Outlier in the historical data and normalize them, and use Principal Component Analysis (PCA) to select features, so as to better identify the key factors affecting photovoltaic power. Then, the CNN network is used to extract the spatial features of the data, and the GRU network is used to extract the temporal features. In response to the difficulty in manually configuring parameters and high randomness of the XGBoost model, ISSA is used to optimize the hyperparameters of the model. Finally, the results predicted by the two methods are reduced using the reciprocal error method while updating the weights to obtain new predicted values to complete the prediction of photovoltaic power. The experimental results show that the proposed CNN-GRU-ISSA-XGBoost combination model has stronger adaptability and higher accuracy.

    参考文献
    相似文献
    引证文献
引用本文

岳有军,吴明沅,王红君,赵辉.公式章 1 节 1基于CNN-GRU-ISSA-XGBoost的短期光伏功率预测[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-14
  • 最后修改日期:2023-08-11
  • 录用日期:2023-08-11
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司