基于改进YOLOv5的骑行者头盔佩戴检测方法
DOI:
作者:
作者单位:

中国矿业大学 地下空间智能控制教育部工程研究中心

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

国家自然科学(51874299),山东省重大科技创新工程项目(2019JZZY020505),中国矿业大学“工业物联网与应急协同”创新团队资助计划(2020ZY002)。


Helmet wearing detection method for riders based on Improved YOLOv5
Author:
Affiliation:

Engineering Research Center of Intelligent Control for Underground Space, Ministry of Education, China University of Mining and Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    未佩戴或未正确佩戴头盔将对骑行人员生命安全造成重大威胁,人工督查不但工作量大效率低下,而且难以做到全区域全时段覆盖。本文提出一种基于改进YOLOv5的骑行者头盔佩戴检测方法,通过监控摄像头对骑行人员的头盔佩戴情况进行智能检测和自动识别。首先,构建了包括不同地点、不同视角、不同天气、不同时段的骑行者头盔佩戴数据集,为研究奠定基础;随后提出了基于改进YOLOv5的头盔佩戴检测模型,通过改进YOLOv5的多尺度特征融合模块,提升小目标检测效果;引入ECA注意力机制,强化特征图融合效果,显著提升模型检测精度;基于GSConv对Neck部分进行轻量化处理,有效降低模型的检测耗时。实验结果表明,本文算法对骑行者头盔佩戴情况具有良好的检测性能,mAP达到93.2%,相较于原算法提升了1.9%,单张图片检测耗时15.23ms,在保证较高检测速率的同时检测精度更高,具有一定的应用价值。

    Abstract:

    Not wearing helmets or wearing helmets incorrectly will pose significant threats to the safety of riders. Manual inspection not only requires large and inefficient work, but also makes it difficult to achieve full coverage of the entire area and time. This paper proposes a helmet wearing detection method for riders based on improved YOLOv5, which intelligently detects and automatically recognizes the helmet wearing status of riders through surveillance cameras. Firstly, a dataset of riders’ helmet wearing in different locations, perspectives, weather conditions, and time periods is created to lay the foundation for the research. Subsequently, a helmet wearing detection model based on improved YOLOv5 is proposed, which improves the multi-scale feature fusion module of YOLOv5 to enhance the detection effect of small targets. ECA attention mechanism is introduced to enhance feature map fusion effect, which significantly improves model detection accuracy; a lightweighted neck is designed based on GSConv to effectively reduce the detection time of the model. Our experiments show that the proposed algorithm has good detection performance for helmet wearing of riders, with mAP reaching 93.2%, which is 1.9% higher than the original algorithm. The detection time of a single image is 15.23ms, which ensures high detection rate and higher detection accuracy, and has certain application value.

    参考文献
    相似文献
    引证文献
引用本文

胡青松,刘许,李飞,李世银,孙彦景.基于改进YOLOv5的骑行者头盔佩戴检测方法[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-10
  • 最后修改日期:2023-08-06
  • 录用日期:2023-08-07
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司