基于SSA-BP-SVM模型的云龙湖水质反演研究
DOI:
作者:
作者单位:

江苏省水文水资源勘测局徐州分局

作者简介:

通讯作者:

中图分类号:

X87

基金项目:


Water Quality Retrieval of Yunlong Lake Based on SSA-BP-SVM Model
Author:
Affiliation:

Xu zhou Hydrology and Water Resources Survey Bureau of Jiangsu Province

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前利用遥感技术及时准确的进行水质监测全面的了解水质分布情况对水环境保护具有重要意义。然而水质参数与地表反射率并非简单的线性关系,BP神经网络和SVM因其非线性模拟的特点,被广泛用于水质反演。但是传统BP神经网络存在收敛缓慢、容易陷入局部最优的问题;SVM虽然具有很好的拟合能力,但受惩罚系数及核函数参数影响较大。因此以云龙湖为研究区域,利用Sentinel-2影像和实测数据,针对重要水质参数电导率和浊度,提出了一种基于麻雀搜索算法(SSA)优化BP神经网络及SVM的水质反演耦合模型,利用SSA对BP神经网络及SVM进行参数寻优,基于验证集MAE计算模型权重,对SSA-BP、SSA-SVM模型测试组输出层加权计算后获得最终反演结果。并与BPNN、SVM、SSA-BP、SSA-SVM模型进行了对比实验。结果表明:(1)Sentinel-2影像对电导率及浊度的敏感波段均为可见光及短波红外波段。(2)SSA-BP-SVM水质反演耦合模型精度更高,电导率及浊度反演模型R2分别为0.92、0.89。(3)云龙湖具有典型的城市水体特征,电导率受上游南望净水厂排水影响较大,浊度受社会生产活动带来的颗粒污染物影响较大。基于Sentinel-2影像利用SSA-BP-SVM模型进行水质反演具有较好的应用潜力,能够为云龙湖水质监测以及制定保护措施提供一定的技术支撑。

    Abstract:

    At present, the use of remote sensing technology in a timely and accurate monitoring of water quality, a comprehensive understanding of the distribution of water quality is of great significance to the protection of water environment.However, the relationship between water quality parameters and surface reflectance is not simple linear. BP neural network and SVM are widely used in water quality inversion because of their nonlinear simulation characteristics.However, the traditional BP neural network has the problems of slow convergence and easy to fall into local optimum. Although SVM has good fitting ability, it is greatly affected by penalty coefficient and kernel function parameter.Therefore, taking Yunlong Lake as the study area, using Sentinel-2 image and measured data, aiming at the important water quality parameters of conductivity and turbidity, a water quality inversion coupling model based on sparrow search algorithm (SSA) to optimize BP neural network and SVM was proposed. SSA was used to optimize the parameters of BP neural network and SVM, the model weight was calculated based on verification set MAE, and the final inversion result was obtained after the weighted calculation of output layer of SSA-BP and SSA-SVM model test group.And compared with BPNN, SVM, SSA-BP, SSA-SVM model.The results show that: (1) The sensitive bands of Sentinel-2 image to conductivity and turbidity are visible light and short wavelength infrared.(2) that precision of the couple model of SSA-BP-SVM is higher, and the R2 of the inversion model of conductivity and turbidity are 0.92 and 0.89 respectively.(3) the yunlong lake has the typical characteristics of urban water body, conductivity is greatly affected by the upstream of the south at water treatment plant drainage, turbidity is greatly affected by the social production activities of particulate pollutants.The SSA-BP-SVM model based on Sentinel-2 image has a good application potential in water quality inversion, which can provide a certain technical support for water quality monitoring and protection measures of Yunlong Lake.

    参考文献
    相似文献
    引证文献
引用本文

任中杰.基于SSA-BP-SVM模型的云龙湖水质反演研究[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-07
  • 最后修改日期:2023-08-08
  • 录用日期:2023-08-10
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司