多策略融合的黄金正弦樽海鞘群算法
作者:
中图分类号:

TP18

基金项目:

国家自然科学基金(61364015)


Golden sine salp swarm algorithm with multi-strategy
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    针对樽海鞘群算法(Salp Swarm Algorithm,SSA)收敛性能差、容易陷入局部最优等问题,提出了多策略融合的黄金正弦樽海鞘群算法(Golden sine Salp Swarm Algorithm with Multi-strategy,MGSSA).首先采用选择反向学习策略对种群中完全偏离最优个体寻优方向的个体计算选择反向解,改善种群质量;然后在跟随者位置更新阶段加入最优个体和精英均值个体引导,以加快算法收敛速度;最后根据概率选择黄金正弦算法变异策略,进一步改善解的质量,同时便于算法后期跳出局部最优.本研究在14个基准测试函数上进行实验,与其他群智能优化算法和其他改进樽海鞘群算法对比,将其应用于拉压弹簧设计问题测试解决工程优化问题的性能.结果表明:MGSSA具有较高的收敛精度和稳定性,在求解工程问题时性能良好.

    Abstract:

    To improve the poor convergence performance and escape from local optimum of Salp Swarm Algorithm (SSA), a Golden sine SSA with Multi-strategy (MGSSA) is proposed.First, the Selective Opposition-Based Learning (SOBL) strategy is used to improve the population quality by calculating selective opposite solutions for individuals in the population that completely deviate from the optimal individual search direction.Then the optimal individual and elite mean individual are added in the follower position update phase to speed up the convergence of the algorithm.Finally, the golden sine algorithm variation strategy is selected based on the probability to further improve the quality of the solution, and facilitate the algorithm to jump out of the local optimum later.In this study, experiments are conducted on 14 benchmark test functions to compare with other swarm intelligence optimization algorithms and novel improved SSA, and then the proposed approach is applied to test the solution of engineering optimization problems in tension/compression spring design.The results show that the proposed MGSSA has high convergence accuracy and stability, and performs well in solving engineering problems.

    参考文献
    [1] Kennedy J, Eberhart R.Particle swarm optimization[C]//International Conference on Neural Networks.November 27-December 1, 1995, Perth, WA, Australia.IEEE, 2002:1942-1948
    [2] Mirjalili S, Lewis A.The whale optimization algorithm[J].Advances in Engineering Software, 2016, 95:51-67
    [3] Pierezan J, Coelho L D S.Coyote optimization algorithm:a new metaheuristic for global optimization problems[C]//2018 IEEE Congress on Evolutionary Computation (CEC).July 8-13, 2018, Rio de Janeiro, Brazil.IEEE, 2018:1-8
    [4] Heidari A A, Mirjalili S, Faris H, et al.Harris hawks optimization:algorithm and applications[J].Future Generation Computer Systems, 2019, 97:849-872
    [5] Khishe M, Mosavi M R.Chimp optimization algorithm[J].Expert Systems with Applications, 2020, 149:113338
    [6] Mirjalili S, Gandomi A H, Mirjalili S Z, et al.Salp swarm algorithm:a bio-inspired optimizer for engineering design problems[J].Advances in Engineering Software, 2017, 114:163-191
    [7] 陈涛, 王梦馨, 黄湘松.基于樽海鞘群算法的无源时差定位[J].电子与信息学报, 2018, 40(7):1591-1597 CHEN Tao, WANG Mengxin, HUANG Xiangsong.Time difference of arrival passive location based on salp swarm algorithm[J].Journal of Electronics & Information Technology, 2018, 40(7):1591-1597
    [8] 王梦秋, 王艳, 纪志成.基于改进樽海鞘群算法的PMSM多参数辨识[J].系统仿真学报, 2018, 30(11):4284-4291, 4297 WANG Mengqiu, WANG Yan, JI Zhicheng.Permanent magnet synchronous motor multi-parameter identification based on improved salp swarm algorithm[J].Journal of System Simulation, 2018, 30(11):4284-4291, 4297
    [9] Ibrahim A, Mohammed S, Ali H A, et al.Breast cancer segmentation from thermal images based on chaotic salp swarm algorithm[J].IEEE Access, 2020, 8:122121-122134
    [10] Tubishat M, Idris N, Shuib L, et al.Improved salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selection[J].Expert Systems with Applications, 2020, 145:113122
    [11] Panda N, Majhi S K.Improved salp swarm algorithm with space transformation search for training neural network[J].Arabian Journal for Science and Engineering, 2020, 45(4):2743-2761
    [12] Manohar E, Banu E A, Punithavathani D S.Composite analysis of web pages in adaptive environment through modified salp swarm algorithm to rank the web pages[J].Journal of Ambient Intelligence and Humanized Computing, 2022, 13(5):2585-2600
    [13] 范千, 陈振健, 夏樟华.一种基于折射反向学习机制与自适应控制因子的改进樽海鞘群算法[J].哈尔滨工业大学学报, 2020, 52(10):183-191 FAN Qian, CHEN Zhenjian, XIA Zhanghua.A modified salp swarm algorithm based on refracted opposition-based learning mechanism and adaptive control factor[J].Journal of Harbin Institute of Technology, 2020, 52(10):183-191
    [14] Kumar S, Kumari R, Nayyar A.Sigmoidal salp swarm algorithm[C]//2020 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD 2020).August 6-7, 2020, Durban, South Africa.IEEE, 2020:1-7
    [15] 张达敏, 陈忠云, 辛梓芸, 等.基于疯狂自适应的樽海鞘群算法[J].控制与决策, 2020, 35(9):2112-2120 ZHANG Damin, CHEN Zhongyun, XIN Ziyun, et al.Salp swarm algorithm based on craziness and adaptive[J].Control and Decision, 2020, 35(9):2112-2120
    [16] 陈雷, 蔺悦, 康志龙.基于衰减因子和动态学习的改进樽海鞘群算法[J].控制理论与应用, 2020, 37(8):1766-1780 CHEN Lei, LIN Yue, KANG Zhilong.Improved salp swarm algorithm based on reduction factor and dynamic learning[J].Control Theory & Applications, 2020, 37(8):1766-1780
    [17] Qais M H, Hasanien H M, Alghuwainem S.Enhanced salp swarm algorithm:application to variable speed wind generators[J].Engineering Applications of Artificial Intelligence, 2019, 80:82-96
    [18] 刘景森, 袁蒙蒙, 左方.面向全局搜索的自适应领导者樽海鞘群算法[J].控制与决策, 2021, 36(9):2152-2160 LIU Jingsen, YUAN Mengmeng, ZUO Fang.Global search-oriented adaptive leader salp swarm algorithm[J].Control and Decision, 2021, 36(9):2152-2160
    [19] Tizhoosh H R.Opposition-based learning:a new scheme for machine intelligence[C]//International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06).November 28-30, 2005, Vienna, Austria.IEEE, 2005:695-701
    [20] Nasser A B, Zamli K Z, Hujainah F, et al.An adaptive opposition-based learning selection:the case for jaya algorithm[J].IEEE Access, 2021, 9:55581-55594
    [21] Dhargupta S, Ghosh M, Mirjalili S, et al.Selective opposition based grey wolf optimization[J].Expert Systems with Applications, 2020, 151:113389
    [22] Alsaqr A M.Remarks on the use of Pearson's and Spearman's correlation coefficients in assessing relationships in ophthalmic data[J].African Vision and Eye Health, 2021, 80(1):10
    [23] 王秋萍, 王彦军, 戴芳.多策略集成的樽海鞘群算法的机器人路径规划[J].电子学报, 2020, 48(11):2101-2113 WANG Qiuping, WANG Yanjun, DAI Fang.Multi-strategy ensemble salp swarm algorithm for robot path planning[J].Acta Electronica Sinica, 2020, 48(11):2101-2113
    [24] Tanyildizi E, Demir G.Golden sine algorithm:a novel math-inspired algorithm[J].Advances in Electrical and Computer Engineering, 2017, 17(2):71-78
    [25] Askari Q, Saeed M, Younas I.Heap-based optimizer inspired by corporate rank hierarchy for global optimization[J].Expert Systems with Applications, 2020, 161:113702
    [26] 白钰, 彭珍瑞.基于自适应惯性权重的樽海鞘群算法[J].控制与决策, 2022, 37(1):237-246 BAI Yu, PENG Zhenrui.Salp swarm algorithm based on adaptive inertia weight[J].Control and Decision, 2022, 37(1):237-246
    [27] 周新, 邹海.融合黄金正弦混合变异的自适应樽海鞘群算法[J].计算机工程与应用, 2021, 57(12):75-85 ZHOU Xin, ZOU Hai.Adaptive salp swarm algorithm with golden sine algorithm and hybrid mutation[J].Computer Engineering and Applications, 2021, 57(12):75-85
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

丁美芳,吴克晴,肖鹏.多策略融合的黄金正弦樽海鞘群算法[J].南京信息工程大学学报(自然科学版),2023,15(6):662-675
DING Meifang, WU Keqing, XIAO Peng. Golden sine salp swarm algorithm with multi-strategy[J]. Journal of Nanjing University of Information Science & Technology, 2023,15(6):662-675

复制
分享
文章指标
  • 点击次数:309
  • 下载次数: 1167
  • HTML阅读次数: 80
  • 引用次数: 0
历史
  • 收稿日期:2022-12-15
  • 在线发布日期: 2023-12-15
  • 出版日期: 2023-11-28

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司