基于IHPO-BP神经网络的滑坡区塔线体系应力预测模型
作者:
作者单位:

1.三峡大学电气与新能源学院;2.国网兰州供电公司

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Stress prediction model of tower-line system in landslide area based on IHPO-BP neural network
Author:
Affiliation:

1.Collage of Electrical Engineer &2.New Energy, China Three Gorges University;3.amp;4.State Grid Lanzhou Electric Power Supply Company

Fund Project:

National natural science foundation of China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对滑坡区输电塔线体系在边坡变形和风荷载作用下易发生杆件失效的问题,提出一种基于IHPO-BP神经网络的滑坡区塔线体系应力预测模型。首先利用改进的Circle混沌映射、平衡因子非线性策略以及Levy飞行对猎人猎物优化算法进行优化,进而利用改进的猎人猎物优化算法对BP神经网络的权值和阈值进行参数寻优,得到滑坡区塔线体系应力预测模型,将风向角、风速和塔腿支座位移作为模型输入,塔线体系杆件最大应力作为输出。预测结果表明:文中提出的IHPO-BP模型具有较高的收敛速度与预测精度,与HPO-BP模型相比,平均绝对误差下降了71.7%,均方根误差下降了76.6%,平均相对误差下降了71.8%。

    Abstract:

    In order to solve the problem that the transmission tower-line system in landslide area is prone to rod failure under the action of slope deformation and wind load, a stress prediction model of tower-line system in landslide area based on IHPO-BP neural network is proposed. Firstly, the improved Circle chaotic mapping, nonlinear strategy of balance factor and Levy flight are used to optimize the hunter-prey optimization algorithm, and then the improved hunter-prey optimization algorithm is used to optimize the weights and thresholds of BP neural network, and the stress prediction model of tower-line system in landslide area is obtained. The wind direction angle, wind speed and displacement of tower leg support are used as model inputs, and the maximum stress of tower-line system members is used as output. The prediction results show that the IHPO-BP model proposed in this paper has high convergence speed and prediction accuracy. Compared with the HPO-BP model, the average absolute error decreases by 71.7%, the root mean square error decreases by 76.6% and the average relative error decreases by 71.8%.

    参考文献
    [1] BEZUGLOVA E V, MATSII S I. Stability Express-Assessment of Landslide Prone Slopes During Pre-Design Development Work on Engineering Protection for Gas Pipeline and Power Transmission Line Routes [J]. Soil Mechanics and Foundation Engineering, 2017, 54(2): 122-127.
    [2] 贾建军, 刘春葵, 节连彬, 等. 采动区输电塔线体系在不同方向地表水平变形下的抗变形性能研究 [J]. 工业建筑, 2021, 51(7): 123-128.IA Jianjun, LIU Chunbin, JIE Lianbin, et al. Study on anti-deformation capacity of transmission tower line system in mining areas in different directions subjected to horizontal ground deformation [J]. Industrial Construction, 2021, 51(7): 123-128.
    [3] 刘建红, 杨波, 节连彬, 等. 采动区输电塔线体系在地表水平变形和边界层风作用下的承载性能及安全性评价[J]. 工业建筑, 2021, 51(11): 90-99.IU Jianhong, YANG Bo, JIELianbin, et al. Bearing performances and safety assessment of transmission tower-line systems in mining areas under surface horizontal deformation and boundary layer wind [J]. Industrial Construction, 2021, 51(11): 90-99.
    [4] 王彦海, 刘晓亮, 任文强, 等. 滑坡区输电塔线体系抗变形能力及动力响应分析[J]. 科学技术与工程, 2021, 21(25): 10725-10731.ANG Yanhai, LIU Xiaoliang, REN Wenqiang, et al. Anti-deformation ability and dynamic response analysis of transmission tower-line system in landslide area [J]. Science Technology and Engineering, 2021, 21(25): 10725-10731.
    [5] SHU Qianjin, HUANG Zhaohui, YUAN Guanglin, et al. Impact of wind loads on the resistance capacity of the transmission tower subjected to ground surface deformations [J]. Thin-Walled Structures, 2018, 131: 619-630.
    [6] SHU Qianjin, YUAN Guanglin, HUANG Zhaohui, et al. The behaviour of the power transmission tower subjected to horizontal support’s movements [J]. Engineering Structures, 2016, 123: 166-180.
    [7] 王彦海, 李清泉, 陈波, 等. 滑坡灾害下500 kV铁塔安全性分析 [J].三峡大学学报(自然科学版), 2020, 42(1): 74-79.ANG Yanhai, LI Qingquan, CHEN Bo, et al. Safety analysis of a 500 kV transmission tower under landslide disaster [J]. Journal of China Three Gorges University(Natural Sciences), 2020, 42(1): 74-79.
    [8] 周文峰, 杜志叶, 张力, 等. 地质灾害对超高压输电线路杆塔杆件失效影响分析 [J]. 电测与仪表, 2020, 57(7): 16-22.HOU Wenfeng, DU Zhiye, ZHANG Li, et al. Effect of geological disasters on failure of UHV transmission line towers [J]. Electrical Measurement Instrumentation, 2020, 57(7): 16-22.
    [9] 张一鸣, 王浩, 茅建校. 基于稀疏高斯过程回归的强/台风作用下大跨度桥梁风振响应概率预测[J]. 土木工程学报, 2022, 55(10): 72-79.HANG Yiming, WANG Hao, MAO Jianxiao, et al. Sparse Gaussian process regression for predicting the typhoon-induced response of long-span bridges[J]. China Civil Engineering Journal, 2022, 55(10): 72-79.
    [10] JANUSZ J. Fiber Bragg Sensors on Strain Analysis of Power Transmission Lines[J]. Materials, 2020, 13(7): 1559.
    [11] 陈松, 吕玉祥. 一种输电杆塔总体倾斜角度检测装置的设计与实现[J].传感技术学报, 2021 ,34(10): 1279-1284.HEN Song, Lü Yuxiang. Design and implementation of an overall tilt angle detection device for transmission tower [J]. Chinese Journal of Sensors and Actuators, 2021 ,34(10): 1279-1284.
    [12] 张涛, 杨罡, 王大伟, 等. 采动区输电铁塔安全性模糊综合评价模型研究 [J]. 三峡大学学报(自然科学版), 2020, 42(1): 87-91.HANG Tao, YANG Gang, WANG Dawei, et al. Study of influence of tower deformation process on safety of transmission towers in mining subsidence area [J]. Journal of China Three Gorges University(Natural Sciences), 2020, 42(1): 87-91.
    [13] 宋耐超, 王瑞琦, 李明明, 等. 多自然灾害下的架空输电线路运行风险评估 [J]. 电力系统保护与控制, 2021, 49(19): 65-71.ONG Naichao, WANG Ruiqi, LIMingming, et al. Risk assessment of overhead transmission lines under multiple natural disasters [J]. Power System Protection and Control, 2021, 49(19): 65-71.
    [14] 苏连成, 朱娇娇, 郭高鑫, 等. 基于LSTM的塔架振动状态监测研究 [J].燕山大学学报, 2022, 46(5): 437-445.U Licheng, ZHU Jiaojiao, GUO Gaoxin, et al. Research on monitoring of tower vibration condition based on LSTM [J]. Journal of Yanshan University, 2022, 46(5): 437-445.
    [15] 马利群, 范学军, 阚志忠. 直驱式输电线路作业车BP神经网络调速控制 [J]. 燕山大学学报, 2022, 46(4): 336-344.A Liqun, FAN Xuejun, KAN Zhizhong, et al. BP neural network speed control of direct-drive motor vehicle for maintaining grid line [J]. Journal of Yanshan University, 2022, 46(4): 336-344.
    [16] WEI Ying, GAO Xuelian. Transmission Line Galloping Prediction Based on GA-BP-SVM Combined Method [J]. IEEE ACCESS, 2021, 9: 107680-107687.
    [17] NARUEI I, KEYNIA F, MOLAHOSSEINI A S. Hunter–prey optimization: algorithm and applications [J]. Soft Computing, 2022, 26(3): 1279-1314.
    [18] 张达敏, 徐航, 王依柔, 等. 嵌入Circle映射和逐维小孔成像反向学习的鲸鱼优化算法[J]. 控制与决策, 2021, 36(5): 1173-1180.HANG Damin, XU Hang, WANG Yirou, et al. Whale optimization algorithm for embedded Circle mapping and one-dimensional oppositional learning based small hole imaging [J]. Control and Decision, 2021, 36(5): 1173-1180.
    [19] NASRI D, MOKEDDEM D. Optimisation of multi-objective problems using an efficient Levy flight grasshopper algorithm [J]. International Journal of High Performance Systems Architecture, 2022, 11(1): 26-35.
    [20] 中国电力企业联合会. 110KV~750KV架空输电线路设计规范: GB 50545-2010 [S]. 北京: 中国计划出版社, 2010.China Electricity Council. Code for design of 110kV~750kV overhead transmission line : GB 50545-2010 [S]. Beijing: China Planning Press,2019.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周冬阳,王彦海,刘晓亮,李梦源,邹梦健.基于IHPO-BP神经网络的滑坡区塔线体系应力预测模型[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:396
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-05-24
  • 最后修改日期:2023-08-07
  • 录用日期:2023-08-10

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司