基于误差修正的极端天气下风速预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

P429;TP183

基金项目:

国家电网有限公司科技指南项目(5400-202199555A-0-5-ZN)


Wind speed prediction in extreme weather based on error correction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    精确地预测极端天气下的风速能为配电网防灾抗灾提供重要的指导作用.本文提出基于时间卷积网络(Temporal Convolutional Network,TCN)与双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)和误差修正的组合模型对极端天气下的风速进行预测.首先对天气数据进行预处理,用TCN提取多特征数据的时间序列特性,将提取信息输入到BiLSTM中进行风速预测.为进一步提高预测精度,引入变分模态分解(Variational Mode Decomposition,VMD)对误差序列进行分解,分别对分解后的误差子序列构建BiLSTM模型进行误差预测,用误差预测值对风速预测值进行误差修正.结合河南省某地实测天气数据进行实验,仿真结果验证了所提方法能有效预测风速,并在极端天气发生时,对风速具有较高的预测精度.

    Abstract:

    Accurate prediction of wind speed in extreme weather can provide important guidance for distribution network to enhance disaster prevention and resilience.This paper proposes a method based on Temporal Convolutional Network (TCN), Bi-directional Long Short-Term Memory(BiLSTM) and error correction for wind speed prediction in extreme weather.First, the time series characteristics of multi-feature weather data are extracted by TCN, and then input into BiLSTM for wind speed prediction.To further improve the prediction accuracy, Variational Mode Decomposition (VMD) is introduced to decompose the error sequence, and BiLSTM models are constructed to perform error prediction for the decomposed error subsequences respectively.Then the error prediction value is used to correct the wind speed prediction value.Finally, simulations are carried out for a place of Henan province, and the results show that compared with measured weather data, the proposed method can effectively predict wind speed with high accuracy when extreme weather occurs.

    参考文献
    相似文献
    引证文献
引用本文

刘善峰,李哲,陈锦鹏,卢明,向玲.基于误差修正的极端天气下风速预测[J].南京信息工程大学学报(自然科学版),2023,15(5):574-584
LIU Shanfeng, LI Zhe, CHEN Jinpeng, LU Ming, XIANG Ling. Wind speed prediction in extreme weather based on error correction[J]. Journal of Nanjing University of Information Science & Technology, 2023,15(5):574-584

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-06
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-10-24
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司