基于T-GLCM和Tamura融合特征的纹理材质分类
作者:
中图分类号:

TP391

基金项目:

江苏省自然科学基金(BK20170955)


Texture material classification based on T-GLCM and Tamura fusion features
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    虚拟现实力触觉再现对于图像纹理特征提取的要求越来越高,纹理因素复杂且无规律,单一的纹理提取算法并不能准确地描述图像纹理的特点.因此提出基于GLCM (灰度共生矩阵)和Tamura融合特征的纹理材质分类算法.此外,本文对传统灰度共生矩阵GLCM进行优化,提出了改进的GLCM (T-GLCM)算子,提升了GLCM的旋转不变性并减少了大量的冗余信息.利用Tamura纹理特征对图像进行量化,然后将各特征区域量化后级联成一组特征向量,融合T-GLCM的纹理特征,通过支持向量机(SVM)对纹理材质进行分类.实验结果表明,相比传统纹理特征提取算法,本文算法具有更高的分类精度且鲁棒性更好.

    Abstract:

    Virtual reality haptic rendering has high requirements for image texture feature extraction.However, a single texture extraction algorithm cannot accurately describe the characteristics of image texture due to the complex and irregular texture factors.Therefore, a texture material classification approach based on GLCM (Gray-Level Co-occurrence Matrix) and Tamura fusion features is proposed.Additionally, we optimize the GLCM and propose the T-GLCM operator, thus improve the rotation invariance of GLCM pair and reduce a lot of redundant information.In this approach, the Tamura texture features are used to quantify the image, and the feature regions are quantified and then cascaded into a set of feature vectors.The texture features of T-GLCM are fused, and the texture materials are classified by Support Vector Machine (SVM).The experimental results show that the proposed approach outperforms traditional texture feature extraction algorithms in classification accuracy and robustness.

    参考文献
    [1] Marsico M,Riccio D.Weighty LBP:a new selection strategy of LBP codes depending on their information content[C]//International Conference on Image Analysis and Processing,2017:424-434
    [2] El Khadiri I,Kas M,El Merabet Y,et al.Repulsive-and-attractive local binary gradient contours:new and efficient feature descriptors for texture classification[J].Information Sciences,2018,467:634-653
    [3] 陈洋,王润生.结合Gabor滤波器和ICA技术的纹理分类方法[J].电子学报,2007,35(2):299-303 CHEN Yang,WANG Runsheng.A method for texture classification by integrating Gabor filters and ICA[J].Acta Electronica Sinica,2007,35(2):299-303
    [4] 梅军,张森林,樊臻.基于Tamura纹理特征的织物组织识别算法[J].轻工机械,2017,35(4):52-55 MEI Jun,ZHANG Senlin,FAN Zhen.Recognition algorithm of fabric based on Tamura texture features[J].Light Industry Machinery,2017,35(4):52-55
    [5] Karmakar P,Teng S W,Zhang D S,et al.Improved Tamura features for image classification using kernel based descriptors[C]//2017 International Conference on Digital Image Computing:Techniques and Applications (DICTA).November 29-December 1,2017,Sydney,NSW,Australia.IEEE,2017:1-7
    [6] Haralick R M,Shanmugam K,Dinstein I.Textural features for image classification[J].IEEE Transactions on Systems,Man,and Cybernetics,1973,SMC-3(6):610-621
    [7] Fahrurozi A,Madenda S,Ernastuti,et al.Wood texture features extraction by using GLCM combined with various edge detection methods[J].Journal of Physics:Conference Series,2016,725:012005
    [8] Song M J,Civco D.Road extraction using SVM and image segmentation[J].Photogrammetric Engineering & Remote Sensing,2004,70(12):1365-1371
    [9] Huang S C,Cheng F C,Chiu Y S.Efficient contrast enhancement using adaptive gamma correction with weighting distribution[J].IEEE Transactions on Image Processing,2013,22(3):1032-1041
    [10] Narendra P M,Fitch R C.Real-time adaptive contrast enhancement[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1981,PAMI-3(6):655-661
    [11] Zulpe N S,Pawar V P.GLCM textural features for brain tumor classification[J].International Journal of Computer Science Issues,2012,9(3):354-359
    [12] Tamura H,Mori S J,Yamawaki T.Textural features corresponding to visual perception[J].IEEE Transactions on Systems,Man,and Cybernetics,1978,8(6):460-473
    [13] 赵海英,徐光美,彭宏.纹理粗糙度度量算法的性能比较[J].计算机科学,2011,38(6):288-292 ZHAO Haiying,XU Guangmei,PENG Hong.Performance evaluation for the algorithms to measure texture coarseness[J].Computer Science,2011,38(6):288-292
    [14] Srunitha K,Padmavathi S.Performance of SVM classifier for image based soil classification[C]//2016 International Conference on Signal Processing,Communication,Power and Embedded System (SCOPES).October 3-5,2016,Paralakhemundi,India.IEEE,2016:411-415
    [15] 郭超磊,陈军华.基于SA-SVM的中文文本分类研究[J].计算机应用与软件,2019,36(3):277-281 GUO Chaolei,CHEN Junhua.Chinese text categorization based on SA-SVM[J].Computer Applications and Software,2019,36(3):277-281
    [16] Zaki M J,Meira W J.Data mining and analysis:fundamental concepts and algorithms[M].New York:Cambridge University Press,2014
    [17] Dalal N,Triggs B.Histograms of oriented gradients for human detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).June 20-25,2005,San Diego,CA,USA.IEEE,2005:886-893
    [18] Mehta R,Egiazarian K.Dominant rotated local binary patterns (DRLBP) for texture classification[J].Pattern Recognition Letters,2016,71:16-22
    [19] 郭晓鹏,杜劲松,白珈郡,等.基于BING似物性检测的行人快速检测算法[J].计算机应用研究,2018,35(11):3458-3461 GUO Xiaopeng,DU Jinsong,BAI Jiajun,et al.Fast human detection algorithm based on BING objectness[J].Application Research of Computers,2018,35(11):3458-3461
    [20] 张亚须,龙晖,云利军.基于改进DPM模型的行人检测方法研究[J].大理大学学报,2018,3(6):13-18 ZHANG Yaxu,LONG Hui,YUN Lijun.Research on pedestrian detection method based on improved DPM model[J].Journal of Dali University,2018,3(6):13-18
    [21] Hadizadeh H.Multi-resolution local Gabor wavelets binary patterns for gray-scale texture description[J].Pattern Recognition Letters,2015,65:163-169
    [22] 刘倩,李策,杨峰,等.基于似物目标的快速行人检测算法[J].计算机应用研究,2019,36(7):2219-2222 LIU Qian,LI Ce,YANG Feng,et al.Rapid pedestrian detection based on generic object generation[J].Application Research of Computers,2019,36(7):2219-2222
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈旭,高亚洲,陈守静,朱栋梁.基于T-GLCM和Tamura融合特征的纹理材质分类[J].南京信息工程大学学报(自然科学版),2023,15(5):561-567
CHEN Xu, GAO Yazhou, CHEN Shoujing, ZHU Dongliang. Texture material classification based on T-GLCM and Tamura fusion features[J]. Journal of Nanjing University of Information Science & Technology, 2023,15(5):561-567

复制
分享
文章指标
  • 点击次数:127
  • 下载次数: 1179
  • HTML阅读次数: 109
  • 引用次数: 0
历史
  • 收稿日期:2021-07-02
  • 在线发布日期: 2023-10-24

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司