基于双注意力CrossViT的微表情识别方法
作者:
中图分类号:

TP391.4

基金项目:

重庆市技术创新与应用发展专项面上项目(cstc2020jscx-msxmX0190);重庆市教委科学技术研究重点项目(KJZD-K202100505)


Micro-expression recognition based on dual attention CrossViT
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | | | |
  • 文章评论
    摘要:

    微表情是人们试图隐藏自己真实情绪时不由自主泄露出来的面部表情,是近年来情感计算领域的热点研究领域.微表情是一种细微的面部运动,难以捕捉其细微变化的特征.本文基于交叉注意力多尺度ViT (CrossViT)在图像分类领域的优异性能以及能够捕捉细微特征信息的能力,将CrossViT作为主干网络,对网络中的交叉注意力机制进行改进,提出了DA模块(Dual Attention)以扩展传统交叉注意力机制,确定注意力结果之间的相关性,从而提升了微表情识别精度.本网络从三个光流特征(即光学应变、水平和垂直光流场)中学习,这些特征是由每个微表情序列的起始帧和峰值帧计算得出,最后通过Softmax进行微表情分类.在微表情融合数据集上,UF1和UAR分别达到了0.727 5和0.727 2,识别精度优于微表情领域的主流算法,验证了本文提出网络的有效性.

    Abstract:

    Micro-expression is the facial expression that people reveal involuntarily when they try to hide their true emotions, which is a hot spot in research of affective computing in recent years.Micro-expression is a subtle facial movement thus is difficult to recognize.Considering its excellent performance in image classification and ability to capture subtle feature information, the cross-attention multiscale ViT (CrossViT) is used as the backbone network to improve the cross-attention mechanism in the network, and the Dual Attention (DA) module is proposed to extend traditional cross-attention mechanism to determine the correlation between attention results, thus improve the micro-expression recognition accuracy.The proposed network learns from three optical flow features (optical strain, horizontal and vertical optical flow fields), which are calculated from the starting frame and peak frame of each micro-expression sequence, and classifies the micro-expression by Softmax.Experiments on the micro-expression fusion dataset show that the proposed network reaches 0.727 5 and 0.727 2 in UF1 and UAR, respectively, which is more accurate than the mainstream micro-expression recognition algorithms, verifying the effectiveness of the dual attention CrossViT based network.

    参考文献
    [1] Yan W J,Wu Q,Liang J,et al.How fast are the leaked facial expressions:the duration of micro-expressions[J].Journal of Nonverbal Behavior,2013,37(4):217-230
    [2] Porter S,Brinke T L.Reading between the lies:identifying concealed and falsified emotions in universal facial expressions[J].Psychological Science,2008,19(5):508-514
    [3] Ahonen T,Hadid A,Pietikäinen M.Face description with local binary patterns:application to face recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(12):2037-2041
    [4] Zhao G Y,Pietikäinen M.Dynamic texture recognition using local binary patterns with an application to facial expressions[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(6):915-928
    [5] Wang Y D,See J,Phan R C W,et al.LBP with six intersection points:reducing redundant information in LBP-TOP for micro-expression recognition[M]//Computer Vision-ACCV 2014.Cham:Springer International Publishing,2015:525-537
    [6] Huang X H,Wang S J,Liu X,et al.Discriminative spatiotemporal local binary pattern with revisited integral projection for spontaneous facial micro-expression recognition[J].IEEE Transactions on Affective Computing,2019,10(1):32-47
    [7] Liu Y J,Zhang J K,Yan W J,et al.A main directional mean optical flow feature for spontaneous micro-expression recognition[J].IEEE Transactions on Affective Computing,2016,7(4):299-310
    [8] Xu F,Zhang J P,Wang J Z.Microexpression identification and categorization using a facial dynamics map[J].IEEE Transactions on Affective Computing,2017,8(2):254-267
    [9] Liu Y J,Li B J,Lai Y K.Sparse MDMO:learning a discriminative feature for micro-expression recognition[J].IEEE Transactions on Affective Computing,2021,12(1):254-261
    [10] 马浩原,安高云,阮秋琦.平均光流方向直方图描述的微表情识别[J].信号处理,2018,34(3):279-288 MA Haoyuan,AN Gaoyun,RUAN Qiuqi.Mean histogram of oriented optical flow feature for micro-expression recognition[J].Journal of Signal Processing,2018,34(3):279-288
    [11] Liong S T,See J,Phan R C W,et al.Less is more:micro-expression recognition from video using apex frame[J].Signal Processing:Image Communication,2018,62:82-92
    [12] Quang N V,Chun J,Tokuyama T.CapsuleNet for micro-expression recognition[C]//201914th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019).May 14-18,2019,Lille,France.IEEE,2019:1-7
    [13] Sabour S,Frosst N,Hinton G E.Dynamic routing between capsules[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.New York:ACM,2017:3859-3869
    [14] Lai Z Y,Chen R H,Jia J L,et al.Real-time micro-expression recognition based on ResNet and atrous convolutions[J].Journal of Ambient Intelligence and Humanized Computing,2020,8:1-12
    [15] Wang C Y,Peng M,Bi T,et al.Micro-attention for micro-expression recognition[J].Neurocomputing,2020,410:354-362
    [16] Liong S T,See J,Phan C W,et al.Spontaneous subtle expression detection and recognition based on facial strain[J].Signal Processing:Image Communication,2016,47:170-182
    [17] Liong S T,Gan Y S,See J,et al.Shallow triple stream three-dimensional CNN (STSTNet) for micro-expression recognition[C]//201914th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019).May 14-18,2019,Lille,France.IEEE,2019:1-5
    [18] Verma M,Vipparthi S K,Singh G,et al.LEARNet:dynamic imaging network for micro expression recognition[J].IEEE Transactions on Image Processing,2019,29:1618-1627
    [19] Khor H Q,See J,Phan R C W,et al.Enriched long-term recurrent convolutional network for facial micro-expression recognition[C]//201813th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018).May 15-19,2018,Xi'an,China.IEEE,2018:667-674
    [20] Zhao Y,Xu J C.Compound micro-expression recognition system[C]//2020 International Conference on Intelligent Transportation,Big Data & Smart City (ICITBS).January 11-12,2020,Vientiane,Laos.IEEE,2020:728-733
    [21] Khor H Q,See J,Liong S T,et al.Dual-stream shallow networks for facial micro-expression recognition[C]//2019 IEEE International Conference on Image Processing (ICIP).September 22-25,2019,Taipei,China.IEEE,2019:36-40
    [22] Zhi R C,Liu M Y,Xu H R,et al.Facial micro-expression recognition using enhanced temporal feature-wise model[M]//Communications in Computer and Information Science.Singapore:Springer Singapore,2019:301-311
    [23] Ma F,Sun B,Li S.Robust facial expression recognition with convolutional visual transformers[J].arXiv e-print,2021,arXiv:2103.16854
    [24] Zhang L F,Hong X P,Arandjelovi c' O,et al.Short and long range relation based spatio-temporal transformer for micro-expression recognition[J].IEEE Transactions on Affective Computing,2022,13(4):1973-1985
    [25] 刘忠洋,周杰,陆加新,等.基于注意力机制的多尺度特征融合图像去雨方法[J/OL].南京信息工程大学学报(自然科学版):1-11[2022-11-11].http://kns.cnki.net/kcms/detail/32.1801.N.20221013.1428.004.html LIU Zhongyang,ZHOU Jie,LU Jiaxin,et al.Multi-scale feature fusion image rain removal algorithm based on attention mechanism[J].Journal of Nanjing University of Information Science & Technology (Natural Science Edition):1-11[2022-11-11].http://kns.cnki.net/kcms/detail/32.1801.N.20221013.1428.004.html
    [26] Chen C F R,Fan Q F,Panda R.CrossViT:cross-attention multi-scale vision transformer for image classification[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV).October 10-17,2021,Montreal,QC,Canada.IEEE,2022:347-356
    [27] Huang L,Wang W M,Chen J,et al.Attention on attention for image captioning[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV).October 27-November 2,2019,Seoul,Korea (South).IEEE,2020:4633-4642
    [28] 杨春霞,韩煜,陈启岗,等.基于BERT与注意力机制的方面级隐式情感分析模型[J/OL].南京信息工程大学学报(自然科学版):1-12[2022-11-11].http://kns.cnki.net/kcms/detail/32.1801.N.20221109.1915.002.html YANG Chunxia,HAN Yu,CHEN Qigang,et al.Aspect-based implicit sentiment analysis model based on BERT and attention mechanism[J].Journal of Nanjing University of Information Science & Technology (Natural Science Edition):1-12[2022-11-11].http://kns.cnki.net/kcms/detail/32.1801.N.20221109.1915.002.html
    [29] Yan W J,Li X B,Wang S J,et al.CASME Ⅱ:an improved spontaneous micro-expression database and the baseline evaluation[J].PLoS One,2014,9(1):e86041
    [30] Li X B,Pfister T,Huang X H,et al.A spontaneous micro-expression database:inducement,collection and baseline[C]//201310th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG).April 22-26,2013,Shanghai,China.IEEE,2013:1-6
    [31] Davison A K,Lansley C,Costen N,et al.SAMM:a spontaneous micro-facial movement dataset[J].IEEE Transactions on Affective Computing,2016,9(1):116-129
    [32] Peng M,Wang C Y,Bi T,et al.A novel apex-time network for cross-dataset micro-expression recognition[C]//20198th International Conference on Affective Computing and Intelligent Interaction (ACII).September 3-6,2019,Cambridge,UK.IEEE,2019:1-6
    [33] Zhou L,Mao Q R,Xue L Y.Cross-database micro-expression recognition:a style aggregated and attention transfer approach[C]//2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW).July 8-12,2019,Shanghai,China.IEEE,2019:102-107
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

冉瑞生,石凯,江小鹏,王宁.基于双注意力CrossViT的微表情识别方法[J].南京信息工程大学学报(自然科学版),2023,15(5):541-550
RAN Ruisheng, SHI Kai, JIANG Xiaopeng, WANG Ning. Micro-expression recognition based on dual attention CrossViT[J]. Journal of Nanjing University of Information Science & Technology, 2023,15(5):541-550

复制
分享
文章指标
  • 点击次数:335
  • 下载次数: 1305
  • HTML阅读次数: 216
  • 引用次数: 0
历史
  • 收稿日期:2022-11-18
  • 在线发布日期: 2023-10-24

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司