二维可饱和吸收体在固态激光器中的最新研究进展
作者单位:

南京信息工程大学

基金项目:

国家自然科学基金(21501097,11374161)、中国气象局青年创新团队项目(2023QN018)、江苏省自然科学基金(BK20201389)、江苏省高校青蓝工程计划(R2018Q03)


Recent research progress of two-dimensional saturable absorbers in solid-state lasers
Author:
Affiliation:

Nanjing University of Information Science and Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    二维材料具有低损耗、超快载流子响应以及宽波段的非线性吸收等特性,并且其层状结构更适合与光电器件结合,在超快光子学和光电器件领域产生了一系列的创新应用。类石墨烯材料已成功在可见、近红外和中远红外波段产生超短脉冲激光。本文综述了基于二维材料的可饱和吸收体在固态激光器中实现调Q以及锁模操作的最新研究进展。首先,介绍了基于二维材料的可饱和吸收体制备方法、可饱和吸收体的吸收机理及非线性吸收特性的测量手段,并总结了基于二维可饱和吸收体的固态激光器在工作波长、输出功率、脉冲宽度等方面的性能,最后对二维材料在先进激光器领域的发展趋势进行了展望。

    Abstract:

    Two-dimensional (2D) materials have the characteristics of low loss, ultrafast carrier response, and wideband nonlinear saturable absorption properties, they have originated a range of innovative applications in photonics and photoelectric device owing to their advantages of a layered structure. Graphene-like materials have recently been utilized for short and ultrashort pulse laser generation in the visible, near-infrared, and mid-infrared wavelength regions. This article reviews the recent progress of 2D materials as saturable absorbers for Q-switched and mode-locked solid-state lasers. Firstly, the preparation methods of 2D materials as saturable absorbers, the saturable absorption principle, and methods for measuring nonlinear absorption properties are introduced and explained theoretically. Secondly, the solid-state pulsed laser is summarized based on the performance of 2D saturable absorbers in operating wavelength, output power, and pulse width. Finally, the development trend of two-dimensional saturable absorbers in solid-state lasers is suggested.

    参考文献
    [1] Bowers M S, Canalias C, Mirov S, et al. Feature issue introduction: advanced solid-state lasers[J]. Optical Materials Express, 2022, 12(6): 2283-7.
    [2] Jia X, Chen Y, Liu L, et al. Combined pulse laser: Reliable tool for high-quality, high-efficiency material processing[J]. Optics & Laser Technology, 2022, 153: 108209.
    [3] Kopyeva M S, Filatova S A, Kamynin V A, et al. Ex-Vivo exposure on biological tissues in the 2-μm spectral range with an all-fiber continuous-wave holmium laser[J]. Photonics, 2022, 9(1): 20.
    [4] Xu J, Kong M, Lin A, et al. Directly modulated green-light diode-pumped solid-state laser for underwater wireless optical communication[J]. Optics Letters, 2017, 42(9): 1664-7.
    [5] Hansen J N, Hancock S, Prade L, et al. Assessing novel lidar modalities for maximizing coverage of a spaceborne system through the use of diode lasers[J]. Remote Sensing, 2022, 14(10): 2426.
    [6] Bobretsova Y K, Veselov D A, Voronkova N V, et al. Pulsed laser module based on a high-power semiconductor laser for the spectral range 1500-1600 nm[J]. Quantum Electronics, 2019, 49(5): 488-92.
    [7] Komljenovic T, Liu S T, Norberg E, et al. Control of widely tunable lasers with high-Q resonator as an integral part of the cavity[J]. Journal of Lightwave Technology, 2017, 35(18): 3934-9.
    [8] Lin Z L, Xue W Z, Zeng H J, et al. Semiconductor saturable absorber mirror mode-locked Yb: YAP laser[J]. Optics Express, 2022, 30(18): 31986-97.
    [9] Qi Y, Bai Z, Wang Y, et al. Research progress of all-solid-state passively Q-switched Er:Yb:glass lasers[J]. Infrared Physics & Technology, 2021, 116: 103727.
    [10] Ma X, Wang C, Zhang J, et al. Broadband BiOCl nonlinear saturable absorber for watt-level passively Q-switched Yb:LuAG single crystal fiber laser[J]. Advanced Optical Materials, 2022, 10(22): 2201087.
    [11] Zhang K, Feng M, Yang J, et al. Niobium tellurium as a novel broadband saturable absorber for pulsed fiber lasers[J]. Journal of Materials Chemistry C, 2022, 10(36): 13201-9.
    [12] Pang L, Zhao M, Zhao Q, et al. GaSb film is a saturable absorber for dissipative soliton generation in a fiber laser[J]. Acs Applied Materials & Interfaces, 2022, 14(50): 55971-8.
    [13] Beer D, Weber J. Photobleaching of organic laser dyes[J]. Optics Communications, 1972, 5(4): 307-9.
    [14] 严娜,常建华,李寒寒,等. 一种基于Cr4+:YAG晶体的紧凑高效被动调Q脉冲激光器[J]. 电子器件, 2018, 41(01): 25-9.
    [15] YAN Nan, CHANG Jianhua, LI Hanhan, et al. A compact and highly efficient passively Q-switched pulsed laser based on Cr 4+ :YAG crystal[J]. Electron Devices, 2018, 41(01): 25-9.
    [16] [15] Zhang N, Song Q, Zhou J, et al. 44-fs pulse generation at 2.05 μm from a SESAM mode-locked Tm:GdScO3 laser[J]. Optics Letters, 2023, 48(2): 510-3.
    [17] [16] Wang L, Chen W, Zhao Y, et al. Sub-50 fs pulse generation from a SESAM mode-locked Tm,Ho-codoped calcium aluminate laser[J]. Optics Letters, 2021, 46(11): 2642-5.
    [18] [17] Dai T F, Chang J H, Deng Z L, et al. Effective switching of an all-solid-state mode-locked laser by a graphene modulator[J]. Optics Express, 2022, 30(10):16530-16540.
    [19] [18] Haris H, Harun S W, Muhammad A R, et al. Passively Q-switched Erbium-doped and Ytterbium-doped fibre lasers with topological insulator bismuth selenide (Bi2Se3) as saturable absorber[J]. Optics & Laser Technology, 2017, 88: 121-7.
    [20] [19] Liu W, Pang L, Han H, et al. Tungsten disulphide for ultrashort pulse generation in all-fiber lasers[J]. Nanoscale, 2017, 9(18): 5806-11.
    [21] [20] Jin X, Hu G, Zhang M, et al. Environmentally stable black phosphorus saturable absorber for ultrafast laser[J]. Nanophotonics, 2020, 9(8): 2445-9.
    [22] [21] Wu Q, Jin X, Chen S, et al. MXene-based saturable absorber for femtosecond mode-locked fiber lasers[J]. Optics Express, 2019, 27(7): 10159-70.
    [23] [22] Tan W D, Su C Y, Knize R J, et al. Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber[J]. Applied Physics Letters, 2010, 96(3): 031106.
    [24] [23] Bao Q, Zhang H, Wang Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19): 3077-83.
    [25] [24] Jiang T, Huang D, Cheng J, et al. Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene[J]. Nature Photonics, 2018, 12(7): 430.
    [26] [25] Wang G Z, Baker-Murray A A, Blau W J. Saturable absorption in 2D nanomaterials and related photonic devices[J]. Laser & Photonics Reviews, 2019, 13(7): 1800282.
    [27] [26] Zhang H, Liu C X, Qi X L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J]. Nature Physics, 2009, 5(6): 438-42.
    [28] [27] Lu S, Zhao C, Zou Y, et al. Third order nonlinear optical property of Bi2Se3[J]. Optics Express, 2013, 21(2): 2072-82.
    [29] [28] Yu H, Zhang H, Wang Y, et al. Topological insulator as an optical modulator for pulsed solid-state lasers[J]. Laser & Photonics Reviews, 2013, 7(6): L77-L83.
    [30] [29] Mao D, Wang Y, Ma C, et al. WS2 mode-locked ultrafast fiber laser[J]. Scientific Reports, 2015, 5: 7965.
    [31] [30] Wang K, Wang J, Fan J, et al. Ultrafast saturable absorption of two-dimensional MoS2 Nanosheets[J]. Acs Nano, 2013, 7(10): 9260-7.
    [32] [31] Long H, Tao L, Tang C Y, et al. Tuning nonlinear optical absorption properties of WS2 nanosheets[J]. Nanoscale, 2015, 7(42): 17771-7.
    [33] [32] Castellanos-Gomez A, Vicarelli L, Prada E, et al. Isolation and characterization of few-layer black phosphorus[J]. 2D Materials, 2014, 1(2): 025001.
    [34] [33] Wang Y, Huang G, Mu H, et al. Ultrafast recovery time and broadband saturable absorption properties of black phosphorus suspension[J]. Applied Physics Letters, 2015, 107(9): 091905.
    [35] [34] 刘邦政,李双成,吴政阳,等. 基于黑磷可饱和吸收体的被动调Q Tm:YAP激光器[J]. 激光与光电子学进展, 2023, 60(1): 0114006.
    [36] LIU Bangzheng, LI Shuangcheng, WU Zhengyang, et al. Passively Q-Switched operation of Tm:YAP laser with black phosphorus saturable absorber[J]. Laser & Optoelectronics Progress, 2023, 60(1): 0114006
    [37] [35] Lu S B, Miao L L, Guo Z N, et al. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material[J]. Optics Express, 2015, 23(9): 11183-94.
    [38] [36] Chu Z, Liu J, Guo Z, et al. 2 μm passively Q-switched laser based on black phosphorus[J]. Optical Materials Express, 2016, 6(7): 2374-9.
    [39] [37] Zhou L, Kang J, Dong Y, et al. Solvent-stabilized few-layer violet phosphorus and its ultrafast nonlinear optics[J]. Nano Research, 2022: 1-7.
    [40] [38] Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-53.
    [41] [39] Kawai K, Fujita M, Iizuka R, et al. Influence of surface termination groups on electrochemical charge storage of MXene electrodes[J]. 2D Materials, 2023, 10(1): 014012.
    [42] [40] Jiang X, Liu S, Liang W, et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH)[J]. Laser & Photonics Reviews, 2018, 12(2): 1700229.
    [43] [41] Zhu Y, Sun X, Tang Y, et al. Two-dimensional materials for light emitting applications: Achievement, challenge and future perspectives[J]. Nano Research, 2021, 14(6): 1912-36.
    [44] [42] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-9.
    [45] [43] Chen Y, Jiang G, Chen S, et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation[J]. Optics Express, 2015, 23(10): 12823-33.
    [46] [44] Yin X, Li Y, Meng H, et al. Surface functionalization of bulk MoS2 sheets for efficient liquid phase exfoliation in polar micromolecular solvents[J]. Applied Surface Science, 2019, 486:362-370.
    [47] [45] Cai Z, Liu B, Zou X, et al. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures[J]. Chemical Reviews, 2018, 118(13): 6091-133.
    [48] [46] Jiao L, Wang Y, Zhi Y, et al. Fabrication and characterization of two-dimensional layered MoS2 thin films by pulsed laser deposition[J]. Advances in Condensed Matter Physics, 2018, 2018: 3485380.
    [49] [47] Rathore J, Mahapatra S. Formation of antimonene nanoribbons by molecular beam epitaxy[J]. 2D Materials, 2020, 7(4): 045003.
    [50] [48] Oper M, Yorulmaz U, Sevik C, et al. Controlled CVD growth of ultrathin Mo2C (MXene) flakes[J]. Journal of Applied Physics, 2022, 131(2): 025304.
    [51] [49] Lu S, Ge Y, Sun Z, et al. Ultrafast nonlinear absorption and nonlinear refraction in few-layer oxidized black phosphorus[J]. Photonics Research, 2016, 4(6):286-292.
    [52] [50] Yan K, Fu L, Peng H, et al. Designed CVD growth of graphene via process engineering[J]. Accounts of Chemical Research, 2013, 46(10): 2263-74.
    [53] [51] Zuo Y, Yu W, Liu C, et al. Optical fibres with embedded two-dimensional materials for ultrahigh nonlinearity[J]. Nature Nanotechnology, 2020, 15(12): 987-U8.
    [54] [52] Zhou Y, Zhang Z, Jiang W, et al. A passively mode-locked thulium-doped fiber laser based on a D-shaped fiber deposited with PbS nanoparticles[J]. Journal of Materials Chemistry C, 2019, 7(36): 11215-9.
    [55] [53] Jafry A A, Krishnan G, Kasim N, et al. MXene Ti3C2Tx as a passive Q-switcher for erbium-doped fiber laser[J]. Optical Fiber Technology, 2020, 58: 102289.
    [56] [54] Wang F, Qu Y, Lan D, et al. Carbon nano-onions as saturable absorbers for pulsed fiber lasers[J]. Acs Applied Nano Materials, 2022, 5(8): 11400-6.
    [57] [55] Jiang X, Li W, Hai T, et al. Inkjet-printed MXene micro-scale devices for integrated broadband ultrafast photonics[J]. Npj 2D Materials and Applications, 2019, 3(1):34.
    [58] [56] Yang H, Feng X, Wang Q, et al. Giant two-photon absorption in bilayer graphene[J]. Nano Letters, 2011, 11(7): 2622-7.
    [59] [57] Sheik-Bahae M, Said A A, Wei T H, et al. Sensitive measurement of optical nonlinearities using a single beam[J]. IEEE Journal of Quantum Electronics, 1990, 26(4): 760-9.
    [60] [58] Wang J, Hernandez Y, Lotya M, et al. Broadband nonlinear optical response of graphene dispersions[J]. Advanced Materials, 2009, 21(23): 2430-2435.
    [61] [59] Zhang J, Jiang T, Zhou T, et al. Saturated absorption of different layered Bi2Se3 films in the resonance zone[J]. Photonics Research, 2018, 6(10): C8-C14.
    [62] [60] Chang J H, Li H H, Yang Z B, et al. Efficient and compact Q-switched green laser using graphene oxide as saturable absorber[J]. Optics & Laser Technology, 2018, 98: 134-8.
    [63] [61] 丁蓉,常建华,孔春霞,等. 基于石墨烯量子点的被动调Q Nd:YVO4激光器[J]. 发光学报, 2020, 41(1): 63-70.
    [64] DING Rong, CHANG Jianhua, KONG Chunxia, et al. Passively Q-switched Nd:YVO4 laser based on graphene quantum dots[J]. Journal of Luminescence, 2020, 41(1): 63-70.
    [65] [62] Li Y, Li H, Wu S, et al. Tuning the optical nonlinearity of graphene[J]. The Journal of Chemical Physics, 2020, 153(8): 080903.
    [66] [63] Dai T F, Liu X, Lei W, et al. Passively Q-switched Nd:YVO4 laser based on silver-plated graphene saturable absorber[C]// Proceedings of the 2019 3rd International Conference on Circuits, System and Simulation (ICCSS), June13-15, 2019, Nanjing, China. New York: IEEE, 2019, 978: 46-49.
    [67] [64] Dai T F, Chang J H, Li H X, et al. Printable graphene–insulator–semiconductor (GIS) heterostructures for active control of infrared Q-switched laser[J]. Advanced Optical Materials, 2021, 9(10): 2001502.
    [68] [65] Dai R, Chang J H, Li Y Y, et al. Performance enhancement of passively Q-switched Nd:YVO4 laser using graphene–molybdenum disulphide heterojunction as a saturable absorber[J]. Optics & Laser Technology, 2019, 117: 265-71.
    [69] [66] 刘海洋,常建华,冯潇潇,等. 基于石墨烯量子点与二硫化钼的双被动调Q激光器研究[J].中国激光, 2020, 47(11): 1101001.
    [70] LIU Haiyang, CHANG Jianhua, FENG Xiaoxiao, et al. Reserch on double passively Q-switched laser based on graphene quantum dots and molybdenum disulfide[J]. Chinese Journal of Lasers, 2020, 47(11): 1101001.
    [71] [67] Huang H, Wang J, Xu N, et al. Ti2CTx MXene as a saturable absorber for passively Q-switched solid-state lasers[J]. Polymers, 2021, 13(2):247.
    [72] [68] Ma X, Xue N, Wang T, et al. Passively CI-switched single crystal fiber pulsed laser at 1.05 μm with T3C2Tx as the saturable absorber[J]. Optics Express, 2022, 30(25): 44617-27.
    [73] [69] Wang J, Li G Y, Liu S C, et al. Nonlinear absorption response of zirconium carbide films[J]. Acs Applied Materials & Interfaces, 2023, 15(2):3317-3324.
    [74] [70] 杨闵皓,常建华,石少杭,等. 新型二硫化钼可饱和吸收体的制备及其超快特性研究[J].中国激光, 2018, 45(10): 1001009.
    [75] YANG Minhao, CHANG Jianhua, SHI Shaohanhg, et al. Preparation and study on the ultrafast characteristics of new type of molybdenum disulfide saturable absorber[J]. Chinese Journal of Lasers, 2018, 45(10): 1001009.
    [76] [71] Shi S H, Chang J H , Yang Z B, et al. Passively mode-locked Nd:YVO4/PPLN green laser using molybdenum disulfide as a saturable absorber[J]. Optical Engineering, 2018, 57(9): 1-6.
    [77] [72] Yang Z, Yang Q, Ren X, et al. Passively mode-locked red Pr:LiYF4 laser based on a two-dimensional palladium diselenide saturable absorber[J]. Optics Express, 2022, 30(2): 2900-8.
    [78] [73] Yan B, Guo H, He G, et al. Ta2NiSe5 nanosheets as a novel broadband saturable absorber for solid-state pulse laser generation[J]. Science China-Materials, 2021, 64(6): 1468-76.
    [79] [74] Yan B, Li G, Shi B, et al. 2D tellurene/black phosphorus heterojunctions based broadband nonlinear saturable absorber[J]. Nanophotonics, 2020, 9(8): 2593-602.
    [80] [75] Cai E, Xu J, Xia Y, et al. The nonlinear optical properties of Zirconium pentatelluride and its application in ultrafast solid-state lasers[J]. Optics & Laser Technology, 2022, 150: 108003.
    [81] [76] Hu Y, Yang W, Qi T, et al. Nb2AlC as saturable absorber for a passively mode-locked operation of Tm: YLF laser[J]. Optics & Laser Technology, 2023, 161: 109116.
    [82] [77] Liang Y, Hu W, Yuan X, et al. Switchable nonlinear optical absorption of metal-organic frameworks[J]. Advanced Optical Materials, 2022, 10(18): 2200779.
    [83] [78] Gao Q, Ma X, Zhang W S, et al. A passively mode-locked of Tm:YAP laser with a zeolitic imidazolate frameworks-8 (ZIF-8) saturable absorber[J]. Optik, 2022, 271: 170133.
    相似文献
    引证文献
    引证文献 [0]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

崔志远,常建华,陶涛.二维可饱和吸收体在固态激光器中的最新研究进展[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:321
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-04-27
  • 最后修改日期:2023-06-02
  • 录用日期:2023-06-05

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司