基于优化DeepLabv3+的智能化高速铁路安全区域划分算法研究
DOI:
作者:
作者单位:

石家庄铁道大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)(206Z1901G);河北省自然科学基金(A2022210024);中国铁路北京局集团有限公司科技研究开发计划课题(2020AGD02);石家庄铁道大学研究生创新资助项目(YC2023027)


Research on intelligent high-speed railroad safety zone division algorithm based on optimized DeepLabv3+
Author:
Affiliation:

Shijiazhuang Tiedao University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan) (206Z1901G); The Natural Science Foundation of Hebei Province (A2022210024); Science and Technology Research and Development Program of China Railway Beijing Bureau Group Corporation (2020AGD02); Postgraduate Innovation Grant Project of Shijiazhuang University of Railways (YC2023027)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前电气化铁路沿线复杂背景下铁路安全区域划分均需采用实际固定标准件为参照物且区域划分范围小等问题,提出一种无需参照物的高速铁路安全区域划分算法。首先基于无人机所采集图像中的相关参数计算出相应的GSD(地面采样间距)参数,然后利用加入ECA-Net模块的DeepLabv3+模型对图像中的轨道进行精确分割。通过边缘检测、开运算、概率霍夫变换等一系列图像处理操作,提取出构成轨道的关键像素点,并运用最小二乘法进行轨道拟合,得出轨道数学表达式。最后,结合数学算法和GSD参数以及轨道数学表达式,完成安全区域的划分。实验结果表明,所提算法测量精度高达90%以上,无需选取固定参照物,适应性强、鲁棒性高,具有较高的实用性和可靠性,为电气化铁路沿线安全管理提供了有效技术支持。

    Abstract:

    In view of the current problem that the railway safety zone division along the electrified railway with complex background needs to use actual fixed standard parts as reference and the division range is small, a smart zone division algorithm that does not require reference objects is proposed. This method first calculates the corresponding GSD parameters based on the relevant parameters in the images collected by the UAV, then uses DeepLabv3+ model with ECA-Net module to accurately segment the railway in the image. Then, a series of image processing operations such as edge detection, opening operation, and probability Hough transform are used to extract the key pixel points that make up the railway, and the least squares algorithm is used to fit the railway and obtain the mathematical expression of the railway. Finally, combined with mathematical algorithms, GSD parameters, and the mathematical expression of the railway, the division of the safety zone is completed. Experimental results show that the measurement accuracy of this method is over 90%, without the need to select fixed reference objects, and has strong adaptability and high robustness, which has high practicality and reliability and provides effective technical support for safety management along the electrified railway.

    参考文献
    相似文献
    引证文献
引用本文

王勇达,王硕禾.基于优化DeepLabv3+的智能化高速铁路安全区域划分算法研究[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-24
  • 最后修改日期:2023-05-28
  • 录用日期:2023-06-07
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司