基于频域相对样本熵的海面小目标特征检测
作者:
中图分类号:

TN959.1

基金项目:

国家自然科学基金(61901224,6220 1184);江苏省高等学校基础科学(自然科学)研究项目(21KJB510036)


Feature detection of sea-surface small targets via relative sample entropy in frequency domain
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    海面小目标是海洋雷达探测的重难点对象.针对传统检测器检测概率低的问题,本文提出一种基于相对样本熵的特征检测器(Feature Detector via Relative Sample Entropy,FD-RSE).首先,定义白化频谱,实现对主杂波带的抑制,从而增大了海杂波序列的不规则性.其次,通过引入样本熵描述序列的复杂度,提取白化频谱的相对样本熵,并将之作为特征.在检测时,该特征能够充分利用海杂波和含目标回波在频谱上的几何差异性.最后,IPIX实测数据验证表明:与传统检测器相比,FD-RSE检测器能有效改善检测性能.

    Abstract:

    It has always been a difficult subject for marine radar to detect small targets on sea surface.To overcome the low detection probability of traditional detectors,a Feature Detector via Relative Sample Entropy (denoted as FD-RSE) is proposed in this paper.First,the whitened spectrum is defined to suppress the main clutter region,thus enlarge the irregularity of the sea clutter sequence.Then,by introducing sample entropy to describe the complexity of sea clutter sequence,the relative sample entropy is extracted from whitened spectrum to serve as feature.Therefore,the difference between the geometric characteristic of sea clutter and that of target echo can be thoroughly exploited in the Doppler spectrum.Finally,the superiority of the proposed FD-RSE over traditional detectors in improving detection performance can be verified by the IPIX measured dataset.

    参考文献
    [1] 许述文,白晓惠,郭子薰,等.海杂波背景下雷达目标特征检测方法的现状与展望[J].雷达学报,2020,9(4):684-714 XU Shuwen,BAI Xiaohui,GUO Zixun,et al.Status and prospects of feature-based detection methods for floating targets on the sea surface[J].Journal of Radars,2020,9(4):684-714
    [2] Shi S N,Liang X,Shui P L,et al.Low-velocity small target detection with Doppler-guided retrospective filter in high-resolution radar at fast scan mode[J].IEEE Transactions on Geoscience and Remote Sensing,2019,57(11):8937-8953
    [3] 刘安邦,施赛楠,杨静,等.基于虚警可控梯度提升树的海面小目标检测[J].南京信息工程大学学报(自然科学版),2022,14(3):341-347 LIU Anbang,SHI Sainan,YANG Jing,et al.Sea-surface small target detection based on false-alarm-controllable gradient boosting decision tree[J].Journal of Nanjing University of Information Science & Technology (Natural Science Edition),2022,14(3):341-347
    [4] 丁昊,董云龙,刘宁波,等.海杂波特性认知研究进展与展望[J].雷达学报,2016,5(5):499-516 DING Hao,DONG Yunlong,LIU Ningbo,et al.Overview and prospects of research on sea clutter property cognition[J].Journal of Radars,2016,5(5):499-516
    [5] Unsworth C P,Cowper M R,McLaughlin S,et al.Re-examining the nature of radar sea clutter[J].IEE Proceedings-Radar,Sonar and Navigation,2002,149(3):105
    [6] 牟效乾,陈小龙,关键,等.基于INet的雷达图像杂波抑制和目标检测方法[J].雷达学报,2020,9(4):640-653 MOU Xiaoqian,CHEN Xiaolong,GUAN Jian,et al.Clutter suppression and marine target detection for radar images based on INet[J].Journal of Radars,2020,9(4):640-653
    [7] Hu J,Tung W W,Gao J B.Detection of low observable targets within sea clutter by structure function based multifractal analysis[J].IEEE Transactions on Antennas and Propagation,2006,54(1):136-143
    [8] Chen X L,Guan J,He Y,et al.Detection of low observable moving target in sea clutter via fractal characteristics in fractional Fourier transform domain[J].IET Radar,Sonar & Navigation,2013,7(6):635-651
    [9] 邵夫驰,行鸿彦.基于FRFT的多重分形海面小目标检测[J].探测与控制学报,2020,42(1):69-74,80 SHAO Fuchi,XING Hongyan.Small target detection based on multi-fractal characteristics of sea clutter FRFT spectrum[J].Journal of Detection & Control,2020,42(1):69-74,80
    [10] Shi Y L,Xie X Y,Li D C.Range distributed floating target detection in sea clutter via feature-based detector[J].IEEE Geoscience and Remote Sensing Letters,2016,13(12):1847-1850
    [11] Shui P L,Li D C,Xu S W.Tri-feature-based detection of floating small targets in sea clutter[J].IEEE Transactions on Aerospace and Electronic Systems,2014,50(2):1416-1430
    [12] Li Y Z,Xie P C,Tang Z S,et al.SVM-based sea-surface small target detection:a false-alarm-rate-controllable approach[J].IEEE Geoscience and Remote Sensing Letters,2019,16(8):1225-1229
    [13] Xu S W,Zheng J B,Pu J,et al.Sea-surface floating small target detection based on polarization features[J].IEEE Geoscience and Remote Sensing Letters,2018,15(10):1505-1509
    [14] Pincus S.Approximate entropy (ApEn) as a complexity measure[J].Chaos (Woodbury,N Y),1995,5(1):110-117
    [15] Richman J S,Moorman J R.Physiological time-series analysis using approximate entropy and sample entropy[J].American Journal of Physiology Heart and Circulatory Physiology,2000,278(6):H2039-H2049
    [16] Chen W T,Wang Z Z,Xie H B,et al.Characterization of surface EMG signal based on fuzzy entropy[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2007,15(2):266-272
    [17] Bandt C,Pompe B.Permutation entropy:a natural complexity measure for time series[J].Physical Review Letters,2002,88(17):174102
    [18] Costa M,Goldberger A L,Peng C K.Multiscale entropy analysis of complex physiologic time series[J].Physical Review Letters,2002,89(6):068102
    相似文献
    引证文献
引用本文

施赛楠,姜丽,曹鼎,吴旭姿.基于频域相对样本熵的海面小目标特征检测[J].南京信息工程大学学报(自然科学版),2023,15(4):429-438
SHI Sainan, JIANG Li, CAO Ding, WU Xuzi. Feature detection of sea-surface small targets via relative sample entropy in frequency domain[J]. Journal of Nanjing University of Information Science & Technology, 2023,15(4):429-438

复制
分享
文章指标
  • 点击次数:231
  • 下载次数: 1346
  • HTML阅读次数: 144
  • 引用次数: 0
历史
  • 收稿日期:2022-03-02
  • 在线发布日期: 2023-07-06

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司