基于多源域领域适应字典学习和稀疏表示的脑电情感识别方法
作者:
中图分类号:

TP391

基金项目:

国家自然科学基金(12005182)


Multi-source domain adaptive dictionary learning and sparse representation approach for electroencephalogram-based emotion recognition
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    脑电信号容易记录且不易伪装,基于脑电信号的情感识别越来越受到人们的关注.然而,人类情感具有多样性和个体可变性,基于脑电信号的情感识别仍是情感计算领域的难题.本文提出一种多源域领域适应字典学习和稀疏表示方法.为减少源领域和目标领域数据分布的差异,将所有领域的数据投影到共享子空间,并在共享子空间中学习一个共有字典.根据稀疏重建的最小化类内误差和最大化类间误差准则,稀疏表示具有类别的分辨能力.另外,每个源域自适应学习领域权重,可以避免负迁移的发生.模型参数的求解通过参数交替优化方法,所有参数可同时达到最优解.DEAP数据集的实验结果显示本文方法在所有对比方法中是最优的.

    Abstract:

    Electroencephalogram (EEG) signals are easy to record and difficult to camouflage,so EEG-based emotion recognition has attracted more and more attention.However,the diversity and individual variability of human emotion make the EEG-based emotion recognition still a difficult problem in the field of affective computing.To solve this problem,a multi-source domain adaptive dictionary learning and sparse representation approach is proposed in this study.To reduce the difference of data distribution between the source domain and the target domain,the data of all domains are projected into a shared subspace,where a common dictionary is learned.The sparse representation has the ability of class recognition according to the criteria of minimizing intra-class error and maximizing inter-class error of sparse reconstruction.In addition,each source domain adapts its domain weight to avoid negative migration.The model parameters are solved by parameter alternating optimization,and all parameters can reach the optimal solution simultaneously.The experimental results on DEAP dataset show that the proposed approach is the best among all the compared methods.

    参考文献
    [1] 权学良,曾志刚,蒋建华,等.基于生理信号的情感计算研究综述[J].自动化学报,2021,47(8):1769-1784 QUAN Xueliang,ZENG Zhigang,JIANG Jianhua,et al.Physiological signals based affective computing:a systematic review[J].Acta Automatica Sinica,2021,47(8):1769-1784
    [2] 郑伟龙,石振锋,吕宝粮.用异质迁移学习构建跨被试脑电情感模型[J].计算机学报,2020,43(2):177-189 ZHENG Weilong,SHI Zhenfeng,LÜ Baoliang.Building cross-subject EEG-based affective models using heterogeneous transfer learning[J].Chinese Journal of Computers,2020,43(2):177-189
    [3] Zheng W L,Zhu J Y,Lu B L.Identifying stable patterns over time for emotion recognition from EEG[J].IEEE Transactions on Affective Computing,2019,10(3):417-429
    [4] Shen F Y,Peng Y,Kong W Z,et al.Multi-scale frequency bands ensemble learning for EEG-based emotion recognition[J].Sensors (Basel,Switzerland),2021,21(4):1262
    [5] Ruan Y,Du M Y,Ni T G.Transfer discriminative dictionary pair learning approach for across-subject EEG emotion classification[J].Frontiers in Psychology,2022,13:899983
    [6] Kang H,Nam Y,Choi S.Composite common spatial pattern for subject-to-subject transfer[J].IEEE Signal Processing Letters,2009,16(8):683-686
    [7] Yang F,Zhao X C,Jiang W G,et al.Multi-method fusion of cross-subject emotion recognition based on high-dimensional EEG features[J].Frontiers in Computational Neuroscience,2019,13:53
    [8] Li J P,Qiu S,Du C D,et al.Domain adaptation for EEG emotion recognition based on latent representation similarity[J].IEEE Transactions on Cognitive and Developmental Systems,2020,12(2):344-353
    [9] Lan Z R,Sourina O,Wang L P,et al.Domain adaptation techniques for EEG-based emotion recognition:a comparative study on two public datasets[J].IEEE Transactions on Cognitive and Developmental Systems,2019,11(1):85-94
    [10] Cimtay Y,Ekmekcioglu E.Investigating the use of pretrained convolutional neural network on cross-subject and cross-dataset EEG emotion recognition[J].Sensors (Basel,Switzerland),2020,20(7):2034
    [11] 郑雄风.基于字典学习的域适应方法研究[D].南京:南京邮电大学,2020 ZHENG Xiongfeng.Research of domain adaptation method based on dictionary learning[D].Nanjing:Nanjing University of Posts and Telecommunications,2020
    [12] 万超.基于SCAD稀疏约束的字典学习算法及其在信号处理中的应用[D].广州:广东工业大学,2021 WAN Chao.A dictionary learning algorithm with the SCAD sparse constraint and its application in signal processing[D].Guangzhou:Guangdong University of Technology,2021
    [13] Ni T G,Ni Y Y,Xue J,et al.A domain adaptation sparse representation classifier for cross-domain electroencephalogram-based emotion classification[J].Frontiers in Psychology,2021,12:721266
    [14] Koelstra S,Muhl C,Soleymani M,et al.DEAP:a database for emotion analysis using physiological signals[J].IEEE Transactions on Affective Computing,2012,3(1):18-31
    [15] 杨金龙,陈小平,汤玉,等.标签一致K-SVD稀疏编码视频跟踪算法[J].计算机辅助设计与图形学学报,2018,30(2):262-272 YANG Jinlong,CHEN Xiaoping,TANG Yu,et al.Visual tracking algorithm based on label consistent K-SVD sparse coding[J].Journal of Computer-Aided Design & Computer Graphics,2018,30(2):262-272
    [16] Jiang Z L,Lin Z,Davis L S.Label consistent K-SVD:learning a discriminative dictionary for recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(11):2651-2664
    [17] Zhang G Q,Sun H J,Xia G Y,et al.Multiple kernel sparse representation-based orthogonal discriminative projection and its cost-sensitive extension[J].IEEE Transactions on Image Processing,2016,25(9):4271-4285
    [18] Zheng W L,Lu B L.Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks[J].IEEE Transactions on Autonomous Mental Development,2015,7(3):162-175
    [19] Cortes C,Vapnik V.Support-vector networks[J].Machine Learning,1995,20(3):273-297
    [20] Chai X,Wang Q S,Zhao Y P,et al.A fast,efficient domain adaptation technique for cross-domain electroencephalography(EEG)-based emotion recognition[J].Sensors (Basel,Switzerland),2017,17(5):1014
    [21] Yan K,Kou L,Zhang D.Learning domain-invariant subspace using domain features and independence maximization[J].IEEE Transactions on Cybernetics,2018,48(1):288-299
    [22] Lin Y P.Constructing a personalized cross-day EEG-based emotion-classification model using transfer learning[J].IEEE Journal of Biomedical and Health Informatics,2020,24(5):1255-1264
    相似文献
    引证文献
引用本文

袁凯烽,侯璐,黄永锋.基于多源域领域适应字典学习和稀疏表示的脑电情感识别方法[J].南京信息工程大学学报(自然科学版),2023,15(4):412-418
YUAN Kaifeng, HOU Lu, HUANG Yongfeng. Multi-source domain adaptive dictionary learning and sparse representation approach for electroencephalogram-based emotion recognition[J]. Journal of Nanjing University of Information Science & Technology, 2023,15(4):412-418

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-23
  • 在线发布日期: 2023-07-06

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司