基于多机器人的协同VSLAM综述
作者单位:

南京信息工程大学


A review of VSLAM based on multiple robots
Author:
Affiliation:

Nanjing University of Information Science and Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    面对大规模环境建图要求时,通过使用轻便的机器人群去感知环境,采用多机器人协同SLAM(同步定位与地图构建)方案可以解决在单个机器人SLAM方案下面临的个体成本高昂、全局误差累积、计算量和风险过于集中的问题,有着极强的鲁棒性与稳定性。本文回顾了多机器人协同SLAM的发展历史,介绍了相关的融合算法与融合架构,并从机器学习分类的角度梳理了现有的协同SLAM算法;同时还介绍了未来多机器人SLAM发展的重要方向:深度学习、语义地图与多机器人VSLAM的结合问题,并对未来发展做出了展望。

    Abstract:

    The multi-robot collaborative SLAM scheme solves the issues of high individual cost, global error accumulation, excessive concentration of calculation and risk under a single robot SLAM(Simultaneous Localization and Mapping) scheme, and has strong robustness and stability, which is a research hotspot when it comes to large-scale environmental mapping requirements. This study analyzes the history of this field's growth and introduces the multi-robot collaborative SLAM's fusion method and architecture. The current collaborative SLAM methods are arranged from the viewpoint of machine learning classification. The future development of deep learning, semantic maps, and multi-robot VSLAM, along with other significant multi-robot SLAM development directions, are also introduced at this time.

    参考文献
    [1] Smith R C, Cheeseman P. On the Representation and Estimation of Spatial Uncertainty[J]. The International Journal of Robotics Research, 1986, 5(4): 56-68.
    [2] Durrant-Whyte H, Bailey T. Simultaneous Localization and Mapping: Part I[J]. IEEE Robotics Automation Magazine, 2006, 13(2): 99-110.
    [3] Bailey T, Durrant-Whyte H. Simultaneous Localization and Mapping (SLAM): Part II[J]. IEEE Robotics Automation Magazine, 2006, 13(3): 108-117.
    [4] Aulinas J, Petillot Y, Salvi J, et al. The SLAM problem: a survey[J]. International Conference of the Catalan Association for Artificial Intelligence ,2008: 9.
    [5] Strasdat H, Montiel J M M, Davison A J. Real-Time Monocular SLAM: Why Filter?[C]//2010 IEEE International Conference on Robotics and Automation. 2010: 2657-2664.
    [6] Strasdat H, Montiel J M M, Davison A J. Visual SLAM: Why Filter?[J]. Image and Vision Computing, 2012, 30(2): 65-77.
    [7] Dissanayake G, Huang S, Wang Z, et al. A Review of Recent Developments in Simultaneous Localization and Mapping[C]//2011 6th International Conference on Industrial and Information Systems. 2011: 477-482.
    [8] Huang S, Dissanayake G. A Critique of Current Developments in Simultaneous Localization and Mapping[J]. International Journal of Advanced Robotic Systems, 2016, 13(5): 172988141666948.
    [9] Saeedi S, Trentini M, Seto M, et al. Multiple-Robot Simultaneous Localization and Mapping: A Review: Multiple-Robot Simultaneous Localization And Mapping[J]. Journal of Field Robotics, 2016, 33(1): 3-46.
    [10] 卫恒,张洋,梁建. 多机器人SLAM后端优化算法综述[J]. 系统工程与电子技术, 2017(2553-2565).EI Heng, ZHANG Yang, LIANG Jian. Overview of Back-End Optimization Algorithms for Multi-Robot [J]. SLAM. Systems engineering and electronics, 2017(2553-2565).
    [11] 阴贺,生徐磊,黄博. 多机器人视觉同时定位与建图技术研究综述[J]. 机械工程学报, 2022(11-36).IN He, SHENG Xu Lei, HUANG Bo. Survey on Vision-Based Simultaneous Localization and Mapping For Multi-Robots[J]. Journal of Mechanical Engineering, 2022(11-36).
    [12] 苗国英,马倩. 多智能体系统的协调控制研究综述[J]. 南京信息工程大学学报, 5(5): 385-396.IAO Guo-ying, MA Qian. Survey on coordinated control of Multi-agent systems[J]. Journal of Nanjing University of Information Science and Technology, 5(5): 385-396.
    [13] 胡凯,杨立帆,胡永赞. 基于滑模变结构控制多机器人协同编队的研究综述[J]. 南京信息工程大学学报(自然科学版), 2022(197-211).U Kai, YANG Lifan, HU Yongzan. A Review of Multi-Robot Cooperative Formation Control Based on Sliding Mode Variable Structure[J]. Journal of Nanjing University of Information Science Technology (Natural Science) ,2022(197-211).
    [14] 刘佳,陈增强,刘忠信. 多智能体系统及其协同控制研究进展[J]. 智能系统学报, 2010(1-9).IU Jia, CHEN Zengjiang, LIU Zhong-xin. Research Progress of Multi-agent Systems and their Cooperative Control[J]. Journal of Intelligent Systems, 2010(1-9).
    [15] Dorigo M, Theraulaz G, Trianni V. Swarm Robotics: Past, Present, and Future [Point of View][J]. Proceedings of the IEEE, 2021, 109(7): 1152-1165.
    [16] 胡凯,陈雪超,鹿奔. 视觉里程计研究综述[J]. 南京信息工程大学学报(自然科学版), 2021(269-280).U Kai, CHEN Xuechao, LU Ben. A Review of Visual Odometer Research[J]. Journal of Nanjing University of Information Science Technology (Natural Science) , 2021(269-280).
    [17] Davison A J, Reid I, Molton N D, et al. MonoSLAM: Real-Time Single Camera SLAM[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6): 1052-1067.
    [18] Klein G, Murray D. Parallel Tracking and Mapping for Small AR Workspaces[C]//2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality. Nara, Japan: IEEE, 2007: 1-10.
    [19] Newcombe R A, Lovegrove S J, Davison A J. DTAM: Dense Tracking and Mapping in Real-Time[C]//2011 International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011: 2320-2327.
    [20] Forster C, Pizzoli M, Scaramuzza D. SVO: Fast Semi-Direct Monocular Visual Odometry[C]//2014 IEEE International Conference on Robotics and Automation (ICRA). Hong Kong, China: IEEE, 2014: 15-22.
    [21] Mur-Artal R, Montiel J M M, Tardós J D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System[J]. IEEE Transactions on Robotics, 2015, 31(5): 1147-1163.
    [22] Mur-Artal R, Tardós J D. ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras[J]. IEEE Transactions on Robotics,2017, 33 (5): 1255-1262.
    [23] Campos C, Elvira R, Rodríguez J J G, et al. ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap SLAM[J]. IEEE Transactions on Robotics, 2021: 1-17.
    [24] Pire T, Fischer T, Castro G, et al. S-PTAM: Stereo Parallel Tracking and Mapping[J]. Robotics and Autonomous Systems, 2017, 93: 27-42.
    [25] Kerl C, Sturm J, Cremers D. Dense visual SLAM for RGB-D cameras[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo: IEEE, 2013: 2100-2106.
    [26] Engel J, Sch?ps T, Cremers D. LSD-SLAM: Large-Scale Direct Monocular SLAM[M]//FLEET D, PAJDLA T, SCHIELE B, et al. Computer Vision – ECCV 2014:(8690). Cham: Springer International Publishing, 2014: 834-849.
    [27] Engel J, Koltun V, Cremers D. Direct Sparse Odometry(DSO)[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(3): 611-625.
    [28] Wang R, Schworer M, Cremers D. Stereo DSO: Large-Scale Direct Sparse Visual Odometry with Stereo Cameras[C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017: 3923-3931.
    [29] Izadi S, Davison A, Fitzgibbon A, et al. Kinectfusion: Real-Time 3D Reconstruction And Interaction Using A Moving Depth Camera[C]//Proceedings of the 24th annual ACM symposium on User interface software and technology - UIST ’11. Santa Barbara, California, USA: ACM Press, 2011: 559.
    [30] Whelan T, Mcdonald J, Kaess M, et al. Kintinuous: Spatially Extended KinectFusion[J]. 2012,20: 8-16.
    [31] Whelan T, Salas-Moreno R F, Glocker B, et al. ElasticFusion: Real-time Dense SLAM and Light Source Estimation[J]. The International Journal of Robotics Research, 2016, 35(14): 1697-1716.
    [32] 刘鑫,王忠,秦明星. 多机器人协同SLAM技术研究进展[J]. 计算机工程, 2022(1-10).IU Xin, WANG Zhong, QIN Mingxing. Research Progress of Multi-Robot Collaborative SLAM[J]. Computer Engineering, 2022(1-10).
    [33] Cohen W W. Adaptive Mapping and Navigation by Teams of Simple Robots[J]. Robotics Auton. Syst., 1996, 18: 411-434.
    [34] Khoshnevis B, Bekey G. Centralized Sensing and Control of Multiple Mobile Robots[J]. Computers Industrial Engineering, 1998, 35(3-4): 503-506.
    [35] Fenwick J W, Newman P M, Leonard J J. Cooperative Concurrent Mapping and Localization[C]// Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292),2002: 1810-1817 vol.2.
    [36] Tao Tong, Huang Yalou, Yuan Jing, et al. Multi-Robot Cooperative Map Building in Unknown Environment Considering Estimation Uncertainty[C]//2008 Chinese Control and Decision Conference. Yantai, Shandong, China: IEEE, 2008: 2896-2901.
    [37] Mohanarajah G, Usenko V, Singh M, et al. Cloud-Based Collaborative 3D Mapping in Real-Time With Low-Cost Robots[J]. IEEE Transactions on Automation Science and Engineering, 2015, 12(2): 423-431.
    [38] Karrer M, Schmuck P, Chli M. CVI-SLAM—Collaborative Visual-Inertial SLAM[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 2762-2769.
    [39] Schmuck P, Chli M. CCM‐SLAM: Robust and Efficient Centralized Collaborative Monocular Simultaneous Localization and Mapping for Robotic Teams[J]. Journal of Field Robotics, 2019, 36(4): 763-781.
    [40] Jang Y, Oh C, Lee Y, et al. Multirobot Collaborative Monocular SLAM Utilizing Rendezvous[J]. IEEE Transactions on Robotics, 2021, 37(5): 1469-1486.
    [41] Cunningham A, Paluri M, Dellaert F. DDF-SAM: Fully Distributed SLAM using Constrained Factor Graphs[C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2010: 3025-3030.
    [42] Cunningham A, Indelman V, Dellaert F. DDF-SAM 2.0: Consistent Distributed Smoothing and Mapping[C]//2013 IEEE International Conference on Robotics and Automation. 2013: 5220-5227.
    [43] Ziparo V, Kleiner A, Marchetti L, et al. Cooperative Exploration for USAR Robots with Indirect Communication[J].IFAC Proceedings Volumes,2007, 40: 554-559.
    [44] Zou D, Tan P. CoSLAM: Collaborative Visual SLAM in Dynamic Environments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(2): 354-366.
    [45] Forster C, Lynen S, Kneip L, et al. Collaborative Monocular SLAM with Multiple Micro Aerial Vehicles[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo: IEEE, 2013: 3962-3970.
    [46] Riazuelo L, Civera J, Montiel J M M. C2TAM: A Cloud Framework for Cooperative Tracking And Mapping[J]. Robotics and Autonomous Systems, 2014, 62(4): 401-413.
    [47] Schmuck P, Chli M. Multi-Uav Collaborative Monocular SLAM[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). 2017: 3863-3870.
    [48] Castle R, Klein G, Murray D W. Video-Rate Localization in Multiple Maps for Wearable Augmented Reality[C]//2008 12th IEEE International Symposium on Wearable Computers. 2008: 15-22.
    [49] Lajoie P Y, Ramtoula B, Chang Y, et al. DOOR-SLAM: Distributed, Online, and Outlier Resilient SLAM for Robotic Teams[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 1656-1663.
    [50] Cao Y, Beltrame G. Vir-Slam: Visual, Inertial, and Ranging SLAM for Single and Multi-Robot Systems[J]. Autonomous Robots, 2021, 45(6): 905-917.
    [51] Huang Y, Shan T, Chen F, et al. DiSCo-SLAM: Distributed Scan Context-Enabled Multi-Robot LiDAR SLAM With Two-Stage Global-Local Graph Optimization[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 1150-1157.
    [52] Zhang T, Zhang L, Chen Y, et al. CVIDS: A Collaborative Localization and Dense Mapping Framework for Multi-Agent Based Visual-Inertial SLAM[J]. IEEE Transactions on Image Processing, 2022, 31: 6562-6576.
    [53] 贺萍,祁铧颖. 跨模态数据融合综述[J]. 软件工程, 2022(1-7).E Ping, QI Huaying. Overview Of Cross-Modal Data Fusion[J]. Software Engineering, 2022(1-7).
    [54] Howard A. Multi-robot Simultaneous Localization and Mapping using Particle Filters[J]. The International Journal of Robotics Research, 2006, 25(12): 1243-1256.
    [55] Knuth J, Barooah P. Collaborative 3D Localization of Robots From Relative Pose Measurements Using Gradient Descent On Manifolds[C]//2012 IEEE International Conference on Robotics and Automation. St Paul, MN, USA: IEEE, 2012: 1101-1106.
    [56] Knuth J, Barooah P. Collaborative Localization With Heterogeneous Inter-Robot Measurements By Riemannian Optimization[C]//2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany: IEEE, 2013: 1534-1539.
    [57] Leblanc K, Saffiotti A. Multirobot Object Localization: A Fuzzy Fusion Approach[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2009, 39(5): 1259-1276.
    [58] Zhao B, Zhong Y, Zhang L. Hybrid Generative/Discriminative Scene Classification Strategy Based On Latent Dirichlet Allocation For High Spatial Resolution Remote Sensing Imagery[C]//2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS. Melbourne, Australia: IEEE, 2013: 196-199.
    [59] 张荣,芬李景玉,刘宇红. 融入语义信息的VSLAM研究综述[J]. 贵州大学学报(自然科学版), 2022(81-87).HANG Rong, FEN Li Jingyu, LIU Yuhong. A Review of VSLAM Research into Semantic Information[J]. Journal of Guizhou University (Natural Science Edition) , 2022(81-87).
    [60] 胡凯,卢飞宇,黄昱锟. 基于深度学习的行为识别算法综述[J]. 南京信息工程大学学报(自然科学版), 2021(730-743).U Kai, LU Feiyu, HUANG Yukun. A Review of Behavior Recognition Algorithms Based on Deep Learning[J]. Journal of Nanjing University of Information Science Technology (Natural Science) , 2021(730-743).
    [61] 杨弋鋆,邓海松,李海波. 面向智能驾驶视觉感知的对抗样本攻击与防御方法综述[J]. 南京信息工程大学学报(自然科学版), 2019(651-659).ANG Yiyun, DENG Haisong, LI Haibo. A Review of Counter-Sample Attack and Defense Methods for Visual Perception of Intelligent Driving[J]. Journal of Nanjing University of Information Science Technology (Natural Science) , 2019(651-659).
    [62] 唐灿,唐亮贵,刘波. 图像特征检测与匹配方法研究综述[J]. 南京信息工程大学学报(自然科学版), 2020(261-273).ANG Can, TANG Lianggui, LIU Bo. A Review of Image Feature Detection and Matching Methods[J]. Journal of Nanjing University of Information Science Technology (Natural Science) , 2020(261-273).
    [63] 张彦雯,胡凯,王鹏盛. 三维重建算法研究综述[J]. 南京信息工程大学学报(自然科学版), 2020(591-602).HANG Yanwen, HU Kai, WANG Pengsheng. A Review of 3D Reconstruction Algorithms[J]. Journal of Nanjing University of Information Science Technology (Natural Science) , 2020(591-602).
    [64] Mccormac J, Handa A, Davison A, et al. SemanticFusion: Dense 3D Semantic Mapping with Convolutional Neural Networks [C].2017 IEEE International Conference on Robotics and Automation (ICRA),2017: 4628-4635.
    [65] Tateno K, Tombari F, Laina I, et al. CNN-SLAM: Real-time Dense Monocular SLAM with Learned Depth Prediction [C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 6243-6252.
    [66] Wang C, Zhang Y, Li X. PMDS-SLAM: Probability Mesh Enhanced Semantic SLAM in Dynamic Environments[C]//2020 5th International Conference on Control, Robotics and Cybernetics (CRC). Wuhan, China: IEEE, 2020: 40-44.
    [67] Zhao X, Zuo T, Hu X. OFM-SLAM: A Visual Semantic SLAM for Dynamic Indoor Environments[J]. Mathematical Problems in Engineering, 2021, 2021: 1-16.
    [68] Ren S, He K, Girshick R, et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017, 39 (6): 1137-1149.
    [69] Li G, Chou W, Yin F. Multi-robot Coordinated Exploration of Indoor Environments Using Semantic Information[J]. Science China Information Sciences, 2018, 61(7): 79201.
    [70] Deng W, Huang K, Chen X, et al. Semantic RGB-D SLAM for Rescue Robot Navigation[J]. IEEE Access, 2020, 8: 221320-221329.
    [71] Yue Y, Zhao C, Wu Z, et al. Collaborative Semantic Understanding and Mapping Framework for Autonomous Systems[J]. IEEE/ASME Transactions on Mechatronics,2021, 26 (2): 978-989.
    [72] Girshick R, Donahue J, Darrell T, et al. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation [C].2014 IEEE Conference on Computer Vision and Pattern Recognition,2014: 580-587.
    [73] Girshick R. Fast R-CNN[C].//Proceedings of the IEEE International Conference on Computer Vision. 2015: 1440-1448.
    [74] He K, Gkioxari G, Dollár P, et al. Mask R-CNN [C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 2961-2969.
    [75] Yang S, Fan G, Bai L, et al. SGC-VSLAM: A Semantic and Geometric Constraints VSLAM for Dynamic Indoor Environments[J]. Sensors, 2020, 20(8): 2432.
    [76] Wu W, Guo L, Gao H, et al. YOLO-SLAM: A Semantic SLAM System Towards Dynamic Environment with Geometric Constraint[J]. Neural Computing and Applications, 2022, 34(8): 6011-6026.
    [77] 郭伟豪,华春生. 动态环境下的语义视觉SLAM算法研究[J]. 辽宁大学学报(自然科学版), 2022(289-297).uo Weihao, HUA Chunsheng. Research on Semantic Visual SLAM Algorithm in Dynamic Environment[J]. Journal of Liaoning University (Natural Science Edition) , 2022(289-297).
    [78] Rosinol A, Abate M, Chang Y, et al. Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping[C]. 2020 IEEE International Conference on Robotics and Automation (ICRA),2020: 1689-1696.
    [79] Rosinol A, Violette A, Abate M, et al. Kimera: from SLAM to Spatial Perception with 3D Dynamic Scene Graphs[C]. The International Journal of Robotics Research 2021, 40: 1510-1546
    [80] Chang Y, Tian Y, How J P, et al. Kimera-Multi: a System for Distributed Multi-Robot Metric-Semantic Simultaneous Localization and Mapping[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). 2021: 11210-11218.
    [81] Y. Tian, Y. Chang, F. Herrera arias, et al. Kimera-Multi: Robust, Distributed, Dense Metric-Semantic SLAM for Multi-Robot Systems[J]. IEEE Transactions on Robotics, 2022, 38(4): 2022-2038.
    [82] Majcherczyk N, Nallathambi D J, Antonelli T, et al. Distributed Data Storage and Fusion for Collective Perception in Resource-Limited Mobile Robot Swarms[J]. IEEE Robotics and Automation Letters, 2021, 6(3): 5549-5556.
    [83] Zobeidi E, Koppel A, Atanasov N. Dense Incremental Metric-Semantic Mapping for Multiagent Systems via Sparse Gaussian Process Regression[J]. IEEE Transactions on Robotics, 2022, 38(5): 3133-3153.
    [84] Ma J W, Leite F. Performance Boosting of Conventional Deep Learning-Based Semantic Segmentation Leveraging Unsupervised Clustering[J]. Automation in Construction, 2022, 136: 104167.
    [85] Wu Z, Xiong Y, Yu S, et al. Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination [C].2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018: 3733-3742.
    [86] Van Gansbeke W, Vandenhende S, Georgoulis S, et al. Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals [C].2021 IEEE/CVF International Conference on Computer Vision (ICCV),2021: 10032-10042.
    [87] Gao S, Li Z Y, Yang M H, et al. Large-scale Unsupervised Semantic Segmentation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022: 1-20.
    [88] Jamieson S, Fathian K, Khosoussi K, et al. Multi-Robot Distributed Semantic Mapping in Unfamiliar Environments through Online Matching of Learned Representations [C].2021 IEEE International Conference on Robotics and Automation (ICRA),2021: 8587-8593.2
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王曦杨,陈炜峰,尚光涛,周铖君,李振雄,徐崇辉.基于多机器人的协同VSLAM综述[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:552
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-04-04
  • 最后修改日期:2023-06-12
  • 录用日期:2023-06-13

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司