基于改进的YOLOv5模型和射线法的车辆违停检测
DOI:
作者:
作者单位:

南京信息工程大学

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

国家自然科学基金(62171228);江苏省研究生科研与实践创新计划(SJCX21_0354)


Vehicle violation detection based on improved YOLOv5 model and radiometric method
Author:
Affiliation:

Nanjing University of Information Science and Technology

Fund Project:

Foundationitems:NationalNaturalScienceFoundationofChina(62171228);JiangsuPostgraduateResearchandPracticeInnovationProgram(SJCX21_0354);

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    车辆违法停车将会降低道路通行效率,引发交通拥堵和交通事故。传统的车辆违停检测方法参数量大且准确度低。为此,本文提出了一种使用改进的YOLOv5模型和射线法的车辆违停检测方法。首先设计了轻量化的特征提取模块,减少模型参数量;其次在模型中加入注意力机制,从通道维度和空间维度增强模型的特征提取能力,保证模型精度;接着使用混合数据增强丰富数据集样本,提升复杂背景下的检测效果;然后选用EIoU作为损失函数提高模型定位能力。实验表明,改进后的模型均值平均精度达到91.35%,比原始YOLOv5s提升1.01%,并且参数量减少35.79%。最后将改进后模型与射线法结合,在Jetson Xavier NX嵌入式平台的检测速度可以达到约28帧/秒,能够实现实时检测。

    Abstract:

    Illegal parking of vehicles will reduce the efficiency of road traffic, causing traffic congestion and traffic accidents. Traditional vehicle violation detection methods have a large number of parameters and low accuracy. Therefore, this paper proposes a vehicle violation detection method using the improved YOLOv5 model and radiographic method. Firstly, a lightweight feature extraction module is designed to reduce the amount of model parameters. Secondly, the attention mechanism is added to the model to enhance the feature extraction ability of the model from the channel dimension and spatial dimension to ensure the accuracy of the model. Then, the mixed data is used to enhance the samples of the rich dataset to improve the detection effect in complex backgrounds. Then, EIoU is selected as the loss function to improve the positioning ability of the model. Experiments show that the mean accuracy of the improved model reaches 91.35%, which is 1.01% higher than that of the original YOLOv5s, and the number of parameters is reduced by 35.79%. Finally, by combining the improved model with the ray method, the inspection speed on the Jetson Xavier NX embedded platform can reach about 28 frames per second, enabling real-time inspection.

    参考文献
    相似文献
    引证文献
引用本文

庄建军,徐子恒,张若愚.基于改进的YOLOv5模型和射线法的车辆违停检测[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-02
  • 最后修改日期:2023-06-01
  • 录用日期:2023-06-06
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司