基于BP神经网络和多元线性回归的辛烷值预测
作者:
中图分类号:

TP183;TP273

基金项目:

国家自然科学基金(71701099,7150 1090);江苏省高等学校自然科学研究项目(17KJB580008)


Octane number prediction based on BP neural network and multiple linear regression
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    为降低硫、烯烃含量及辛烷值损失,保证汽油清洁化生产,基于S Zorb装置运行积累的数据,首先利用Lasso算法初步筛选建模变量,并基于BP神经网络计算指标因子贡献度,进一步筛选出15个主要变量用于建立辛烷值损失预测模型;其次对比分析4种模型,得出BP神经网络预测精度更优,更适合作为辛烷值损失预测模型,并经过10折交叉验证得到均方误差(MSE)均值为0.027 193,R2均值为0.904 87,验证了该模型的可靠性;最后在控制油品硫质量分数不大于5 μg/g的前提下,结合多元线性回归对主要变量进行优化调控.结果表明,需同时改变多个变量才能使辛烷值损失降幅大于30%,多元线性回归模型预测精度较好,能按照一定比例对主要变量进行正反向调控.本文还可视化展示了优化过程中辛烷值和硫含量的变化轨迹.

    Abstract:

    In order to reduce the sulfur and olefin and the loss of octane number so as to promote the clean production of gasoline,an octane number loss prediction model is established based on data accumulated by the S Zorb device.First,the Lasso is used to screen out the modeling variables,then the index factor contributions are calculated by the BP neural network,based on which 15 main variables are screened out to build the model.Second,four modeling approaches are compared and analyzed,which shows that the BP neural network has better prediction accuracy thus is more suitable to model the octane number loss.The ten-fold cross-validation produces the average MSE value of 0.027 193 and the average R2 value of 0.904 87,verifying the reliability of the model.Furthermore,the main variables are optimized and adjusted by multiple linear regression under the premise that the sulfur content is not greater than 5 μg/g.The results show that multiple variables need to be adjusted simultaneously to reduce the octane number loss by more than 30%.The multiple linear regression model has good prediction accuracy and can adjust main variables positively or negatively according to a certain proportion.The trajectories of octane number and sulfur content are also visualized in the paper.

    参考文献
    [1] 丁怡曼,薛晓康,范宾,等.基于PLS-红外光谱的汽油辛烷值测定方法研究[J].化学研究与应用,2021,33(5):863-867 DING Yiman,XUE Xiaokang,FAN Bin,et al.Determination of gasoline octane number based on PLS-infrared spectroscopy[J].Chemical Research and Application,2021,33(5):863-867
    [2] Kardamakis A A,Pasadakis N.Autoregressive modeling of near-IR spectra and MLR to predict RON values of gasolines[J].Fuel,2010,89(1):158-161
    [3] 黄水望,赵晓锋,郭振,等.气相色谱法计算汽油的研究法辛烷值[J].广州化工,2018,46(1):145-146,186 HUANG Shuiwang,ZHAO Xiaofeng,GUO Zhen,et al.Determination of research octane number of gasoline by gas chromatography[J].Guangzhou Chemical Industry,2018,46(1):145-146,186
    [4] Ghosh P,Hickey K J,Jaffe S B.Development of a detailed gasoline composition-based octane model[J].Industrial & Engineering Chemistry Research,2006,45(1):337-345
    [5] 熊春华,田高友.汽油抗爆性能指标与其他理化指标关联研究[C]//中国汽车工程学会燃料与润滑油分会第十四届年会论文集.沈阳:辽海出版社,2010:126-132 XIONG Chunhua,TIAN Gaoyou.The correlations study of antiknocking properties with other physical-chemical properties of gasoline[C]//Proceedings of the 14th Annual Meeting of Fuel and Lubricant Branch of Chinese Society of Automotive Engineering.Shenyang:Liaohai Publishing House,2010:126-132
    [6] 杨帆,周敏,金继民,等.智能优化算法及人工神经网络在催化裂化模型分析中的应用进展[J].石油学报(石油加工),2020,36(4):878-888 YANG Fan,ZHOU Min,JIN Jimin,et al.Research progress on application of intelligent optimization algorithm and artificial neural network in FCC model analysis[J].Acta Petrolei Sinica (Petroleum Processing Section),2020,36(4):878-888
    [7] 欧阳福生,游俊峰,方伟刚.BP神经网络结合遗传算法优化MIP工艺的产品分布[J].石油炼制与化工,2018,49(8):98-104 OUYANG Fusheng,YOU Junfeng,FANG Weigang.Optimizing product distribution of MIP process by BP neural network combined with genetic algorithm[J].Petroleum Processing and Petrochemicals,2018,49(8):98-104
    [8] 杨帆,周敏,戴超男,等.基于人工智能算法的催化裂化装置汽油收率预测模型的构建与分析[J].石油学报(石油加工),2019,35(4):807-817 YANG Fan,ZHOU Min,DAI Chaonan,et al.Construction and analysis of gasoline yield prediction model for FCC unit based on artificial intelligence algorithm[J].Acta Petrolei Sinica (Petroleum Processing Section),2019,35(4):807-817
    [9] 张玉瑞,陈微微,周晓龙,等.一种改进的调合辛烷值模型预测汽油研究法辛烷值[J].石油炼制与化工,2016,47(6):42-46 ZHANG Yurui,CHEN Weiwei,ZHOU Xiaolong,et al.RON prediction by improved model for blended gasoline[J].Petroleum Processing and Petrochemicals,2016,47(6):42-46
    [10] 王天宇,刘忠保,黄明富,等.采用人工神经网络方法建立加氢裂化反应体系模型[J].石油炼制与化工,2015,46(8):90-95 WANG Tianyu,LIU Zhongbao,HUANG Mingfu,et al.Modeling VGO hydrocracking process by BP-ANN technology[J].Petroleum Processing and Petrochemicals,2015,46(8):90-95
    [11] 朱燚丹,陈兴荣,李秋萍.基于信息增益率的超高维变量选择[J].统计与决策,2021,37(22):18-21 ZHU Yidan,CHEN Xingrong,LI Qiuping.Ultra-high dimensional variable selection based on information gain rate[J].Statistics and Decision,2021,37(22):18-21
    [12] 杨轶男,任晔,毛安国,等.影响催化裂化装置汽油辛烷值变化的技术因素分析[J].炼油技术与工程,2019,49(6):32-35 YANG Yinan,REN Ye,MAO Anguo,et al.Analysis of technical factors affecting gasoline octane number in catalytic cracking unit[J].Petroleum Refinery Engineering,2019,49(6):32-35
    [13] 刘禹含,曹萃文.基于LightGBM的催化重整装置产品预测及操作优化相关性分析[J].石油学报(石油加工),2020,36(4):756-766 LIU Yuhan,CAO Cuiwen.Product prediction technology and optimal operation correlation analysis for catalytic reforming unit based on LightGBM[J].Acta Petrolei Sinica (Petroleum Processing Section),2020,36(4):756-766
    [14] 胡碧霞,张红光,卢建刚,等.汽油辛烷值近红外光谱检测的改进极限学习机建模方法[J].南京理工大学学报,2017,41(5):660-665 HU Bixia,ZHANG Hongguang,LU Jiangang,et al.Novel modeling method based on improved extreme learning machine algorithm for gasoline octane number detection by near infrared spectroscopy[J].Journal of Nanjing University of Science and Technology,2017,41(5):660-665
    [15] 郑斌,孙洪霞,王维民.基于随机森林回归的汽油研究法辛烷值预测[J].石油炼制与化工,2020,51(12):69-75 ZHENG Bin,SUN Hongxia,WANG Weimin.Prediction of gasoline research octane number based on random forest regression[J].Petroleum Processing and Petrochemicals,2020,51(12):69-75
    [16] Kubic W L,Jenkins R W,Moore C M,et al.Artificial neural network based group contribution method for estimating cetane and octane numbers of hydrocarbons and oxygenated organic compounds[J].Industrial & Engineering Chemistry Research,2017,56(42):12236-12245
    [17] Abdul J A G,van Oudenhoven V,Emwas A H,et al.Predicting octane number using nuclear magnetic resonance spectroscopy and artificial neural networks[J].Energy & Fuels,2018,32(5):6309-6329
    [18] Razavi-Far R,Hallaji E,Farajzadeh-Zanjani M,et al.Information fusion and semi-supervised deep learning scheme for diagnosing gear faults in induction machine systems[J].IEEE Transactions on Industrial Electronics,2019,66(8):6331-6342
    [19] Yang X B,Zheng X L,Gao H J.SGD-based adaptive NN control design for uncertain nonlinear systems[J].IEEE Transactions on Neural Networks and Learning Systems,2018,29(10):5071-5083
    [20] Yuan X F,Huang B,Wang Y L,et al.Deep learning-based feature representation and its application for soft sensor modeling with variable-wise weighted SAE[J].IEEE Transactions on Industrial Informatics,2018,14(7):3235-3243
    [21] 韩万龙,范峥,薛岗,等.利用BP人工神经网络预测天然气中重组分对净化装置的影响[J].石油与天然气化工,2018,47(6):1-6 HAN Wanlong,FAN Zheng,XUE Gang,et al.Effects prediction of heavy components in natural gas on purification unit by BP artificial neural network[J].Chemical Engineering of Oil & Gas,2018,47(6):1-6
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

许美贤,郑琰,周若兰,张如意.基于BP神经网络和多元线性回归的辛烷值预测[J].南京信息工程大学学报(自然科学版),2023,15(4):379-392
XU Meixian, ZHENG Yan, ZHOU Ruolan, ZHANG Ruyi. Octane number prediction based on BP neural network and multiple linear regression[J]. Journal of Nanjing University of Information Science & Technology, 2023,15(4):379-392

复制
分享
文章指标
  • 点击次数:756
  • 下载次数: 1497
  • HTML阅读次数: 950
  • 引用次数: 0
历史
  • 收稿日期:2022-04-26
  • 在线发布日期: 2023-07-06

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司