基于MODIS和CLDAS的综合干旱监测模型研究
DOI:
作者:
作者单位:

1.南京信息工程大学地理科学学院;2.国家气象信息中心

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Study on integrated drought monitoring model based on MODIS and CLDAS
Author:
Affiliation:

1.School of Geographic Sciences, Nanjing University of Information Science and Technology;2.National Meteorological Information Center

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    摘要:传统的干旱监测指数主要考虑单一影响因子,往往无法全面综合反映干旱状况。基于MODIS数据和CLDAS数据,选取多个影响因子和能够直接反映干旱程度的干旱指数作为自变量,以综合气象干旱指数(CI)为因变量,通过梯度提升机(GBM)机器学习算法建立日尺度综合干旱监测模型,并以2015—2018年华北地区干旱为例进行了研究。结果表明模型监测结果与站点CI计算值具有显著的相关性,训练集和测试集决定系数分别达到0.945和0.655,均方根误差(RMSE)分别为0.033和0.082,综合干旱监测模型具有较高的精度。且模型监测与CI监测各月等级一致率均在65%以上,并与标准化降水蒸散指数(SPEI)和土壤相对湿度(RSM)相关系数分别为0.68和0.60,能较好地反映气象干旱和农业干旱状况。典型干旱情况监测表明,综合干旱监测模型综合考虑多种干旱影响因素,能较准确地识别出干旱的发生,表征综合干旱发生状况。

    Abstract:

    Abstract:Traditional drought monitoring indexes mainly consider a single factor and often cannot comprehensively reflect the drought situation. Based on remote sensing and land surface data Assimilation System (CLDAS) data of China Meteorological Administration, a daily scale integrated drought monitoring model was established by Gradient Boosting Machine (GBM), one of machine learning algorithm, with multiple influencing factors and drought index which can directly reflect drought degree as independent variables and comprehensive meteorological drought index (CI) as dependent variable. It was researched by taking Drought in North China from 2015 to 2018 as a case. The results show that the model monitoring results were significantly correlated with the CI calculated values of the observation stations. The coefficients of determination of the training and test sets were 0.945 and 0.655, respectively, and the root mean square error (RMSE) was 0.033 and 0.082, respectively. The integrated drought monitoring model had high accuracy. The consistency rate between the model monitoring and CI calculated values was above 65%, and the correlation coefficients with the standard precipitation evapotranspiration index (SPEI) and relative soil moisture(RSM) were 0.68 and 0.6, respectively, which could better reflect the meteorological drought and agricultural drought. Monitoring of typical drought condition shows that the integrated drought monitoring model can accurately identify the drought occurrence of drought , and represent the situation of comprehensive drought by considering various drought influencing factors.

    参考文献
    相似文献
    引证文献
引用本文

邢雅洁,沈润平,黄安奇,梁宇靖,王云宇,谢昭颖,师春香,孙帅.基于MODIS和CLDAS的综合干旱监测模型研究[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-02-28
  • 最后修改日期:2023-04-20
  • 录用日期:2023-04-23
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司