基于多代理模仿学习的普适边缘计算资源分配
DOI:
作者:
作者单位:

中国民用航空飞行学院

作者简介:

通讯作者:

中图分类号:

基金项目:

四川省科技厅科普创作项目(2022JDKP0093);四川省科技厅苗子工程重点项目(2022JDRC0076);中央高校基本科研业务费专项基金(ZHMH2022-004,J2022-025)


Resource allocation for pervasive edge computing based on multi-agent imitation learning
Author:
Affiliation:

Civil Aviation Flight University of China

Fund Project:

Popular Science Creation Project of Science and Technology Department of Sichuan Province(2022JDKP0093);Key Projects of Sichuan Provincial Department of Science and Technology Miao Project(2022JDRC0076);Central University Special Fund for Basic Scientific Research Business Expenses(ZHMH2022-004,J2022-025)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    普适边缘计算允许对等设备之间建立独立通信连接,能帮助用户以较低的时延处理海量的计算任务。然而,分散的设备中不能实时获取到网络的全局系统状态,无法保证设备资源利用的公平性。针对该问题,提出了一种基于生成对抗网络(Generative Adversarial Network,GAN)的普适边缘计算资源分配方案。该方案首先基于最小化时延与能耗建立多目标优化问题,然后根据随机博弈理论将优化问题转化为最大奖励问题,接着提出一种基于多代理模仿学习的计算卸载算法,该算法将多代理生成对抗模仿学习(GAIL)和马尔可夫策略(Markov Cecision Process,MDP)相结合以逼近专家性能,实现了算法的在线执行,最后结合非支配排序遗传算法II(Non-dominated Sorting Genetic Algorithm II, NSGA-II)多目标优化算法,对时延和能耗进行了联合优化。仿真结果表明,所提出解决方案与其他边缘计算资源分配方案相比,时延缩短了30.8%,能耗降低了34.3%。

    Abstract:

    Pervasive edge computing allows peer devices to establish independent communication connections, which can help users process massive computing tasks with low delay. However, distributed devices cannot obtain the global system status of the network in real time, and cannot guarantee the fairness of resource utilization. To solve this problem, a resource allocation scheme for pervasive edge computing based on generative adversary network (GAN) is proposed. In this scheme, firstly, a multi-objective optimization problem is established based on minimizing the time delay and energy consumption, then the optimization problem is transformed into the maximum reward problem according to the random game theory, and then a computation offloading algorithm based on multi-agent imitation learning is proposed. The algorithm combines multi-agent generation against imitation learning (GAIL) and Markov strategy (MDP) to approximate the performance of experts, and realizes the online execution of the algorithm. Finally, combined with non-dominated sorting genetic algorithm II (NSGA-II) multi-objective optimization algorithm, the time delay and energy consumption are jointly optimized. Simulation results show that, compared with other edge computing resource allocation schemes, the time delay of the proposed solution is shortened by 30.8% and the energy consumption is reduced by 34.3%.

    参考文献
    相似文献
    引证文献
引用本文

刘建华,李炜,刘佳嘉,涂晓光,谢家雨.基于多代理模仿学习的普适边缘计算资源分配[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-02-16
  • 最后修改日期:2023-03-23
  • 录用日期:2023-03-24
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司