GNSS/SINS/视觉导航鲁棒算法
DOI:
作者:
作者单位:

信息工程大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


GNSS/SINS/visual navigation robust algorithm
Author:
Affiliation:

Information Engineering University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    全球导航卫星系统(Global Navigation Satellite System, GNSS)、捷联惯性导航系统(Strapdown Inertial Navigation System, SINS)和视觉传感器优势互补,三者信息融合可获得高精度、无漂移的导航定位信息。针对GNSS/SINS/视觉融合导航易受运动速度、光照变化、遮挡等影响导致定位精度和鲁棒性降低问题,本文在图优化框架的代价函数中加入SoftLOne鲁棒核函数,设置量测值粗差检验程序,降低离群点带来的负面影响。进一步,对量测值计算残差进行卡方检验,对超限残差降权处理,提高系统精度和鲁棒性。实验结果表明,本文算法较不施加鲁棒核函数、不采用异常值剔除策略和卡方检验的传统算法、以及加入其他鲁棒核函数的算法精度更高、鲁棒性更好。能够较大程度提升GNSS/SINS/视觉导航定位精度和鲁棒性,在大尺度环境下,未出现较大漂移误差,绝对位姿误差最大值1.71m。绝对位姿误差标准差0.336m,定位精度较高。

    Abstract:

    Global Navigation Satellite System (GNSS), Strapdown Inertial Navigation System (SINS) and visual sensors complement each other, and their information fusion can obtain high-precision, drift-free navigation and positioning information. Aiming at the problem that GNSS/SINS/vision fusion navigation is vulnerable to the impact of motion speed, light change, occlusion, etc., which leads to the decrease of navigation positioning accuracy and robustness, this paper adds the SoftLone robust kernel function to the cost function of the graph optimization framework, and sets the gross error test procedure of the measured value to reduce the negative impact of outliers. Further, the chi-square test is performed on the calculated residuals of the measured value, and the weight of the over-limit residual is reduced to improve the accuracy and robustness of the system. The experimental results show that the algorithm in this paper has higher accuracy and better robustness than the traditional algorithm without robust kernel function, outlier elimination strategy and chi-square test, and the algorithm with other robust kernel functions. It can greatly improve the positioning accuracy and robustness of GNSS/SINS/visual navigation. In large scale environment, there is no large drift errors, and absolute pose root mean square error is 0.735m, and the standard deviation of absolute pose error is 0.336m.

    参考文献
    相似文献
    引证文献
引用本文

李明,柴洪洲,郑乃铨,张乾坤,马洪磊. GNSS/SINS/视觉导航鲁棒算法[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-02-14
  • 最后修改日期:2023-04-20
  • 录用日期:2023-05-11
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司