基于深度学习的城市积水深度预报研究
DOI:
作者:
作者单位:

1.南京信息工程大学 气象灾害预报预警与评估协同创新中心/气象灾害教育部重点实验室;2.南京信息工程大学

作者简介:

通讯作者:

中图分类号:

基金项目:

名称和编号:国家重点研发计划重点专项“重大灾害性天气的短时短期精细化无缝隙预报技术研究”(2017YFC1502000)


A study on urban water level prediction at water-logging stationsbased on deep learning approach
Author:
Affiliation:

1.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters CIC-FEMD,Nanjing University of Information Science Technology;2.Nanjing University of Information Science &3.Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着全球气候变化的不断加剧和城市化的快速发展,极端降雨过程导致的城市积涝灾害愈演愈烈,已成为世界各地许多城市面临的严重挑战. 基于2021年5-8月浙江省诸暨市75个国家自动气象观测站的降雨量数据和典型积水点的积水深度数据,使用深度学习模型长短时记忆网络LSTM(Long Short Term Memory,LSTM)构建降雨量与积水深度的关系模型,提供未来间隔15min的2h内城市积涝水位预报,并与随机森林RF(Random Forest,RF)和人工神经网络ANN(Artificial Neural Network,ANN)模型预报结果进行对比. 预报结果表明,LSTM使用前4h的积水与降雨量资料进行未来2h积水预报的结果最优,均方根误差(RMSE)小于5.6cm,相关系数(CC)在 0.93以上,纳什效率系数(NSE)值在0.86以上,预报效果优于RF和ANN,表明所构建的积水预报人工智能模型具有较好的预报效果.

    Abstract:

    With the continuous intensification of global climate change and the rapid development of urbanization, urban waterlogging disasters caused by extreme rainfall processes have become increasingly severe and have become a serious challenge faced by many cities around the world. Based on the rainfall data from 75 national automatic meteorological observation stations in Zhuji City, Zhejiang Province from May to August 2021 and the depth data of typical waterlogging points, a deep learning model Long Short Term Memory (LSTM) network is used to construct a relationship model between rainfall and waterlogging depth, providing a 2-hour urban waterlogging level forecast with an interval of 15 minutes in the future, The prediction results are compared with those of random forest (RF) and Artificial Neural Network (ANN) models. The prediction results show that LSTM has the best performance in predicting water accumulation in the next 2 hours using the water accumulation and rainfall data from the first 4 hours, with a root mean square error (RMSE) of less than 5.6cm, a correlation coefficient (CC) of over 0.93, and a Nash efficiency coefficient (NSE) of over 0.86. The prediction effect is superior to RF and ANN, indicating that the constructed artificial intelligence model for water accumulation prediction has good prediction performance.

    参考文献
    相似文献
    引证文献
引用本文

智协飞,崔碧瑶,季焱.基于深度学习的城市积水深度预报研究[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-02-11
  • 最后修改日期:2023-05-08
  • 录用日期:2023-05-09
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司