LSTM-WBLS模型在日降水量预测中的应用
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:

南方海洋科学与工程广东省实验室(珠海)基金(SML2020SP007);国家自然科学基金(62076136)


Application of improved LSTM-WBLS model in daily precipitation forecast
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于长短时记忆网络(Long Short-Term Memory,LSTM)降水量预测模型存在过拟合、时滞现象,而宽度学习系统(Broad Learning System,BLS) 无需多次迭代的特点有助于解决LSTM的上述缺点.加权宽度学习系统(Weighted Broad Learning System,WBLS)通过在BLS中引入加权惩罚因子约束分配样本权重,降低噪声和异常值对降水量预测精度的影响.本文提出一种LSTM-WBLS日降水量预测模型,选取湖北省巴东站日降水量进行实证研究,并考虑气压、气温、湿度、风速和日照等因素对降水量的影响.实验结果表明,与现有的预测模型相比,LSTM-BLS模型在RMSE、MAE和R2等评价指标上均有显著提升.不同时间步长下,本文模型预测精度均优于现有模型,验证了其稳定性.与LSTM相比,WBLS直接计算权重的特点使得LSTM-WBLS的运算效率并未降低.

    Abstract:

    The popular Long Short-Term Memory (LSTM) based precipitation prediction models suffer from overfitting and time lag.Broad Learning System (BLS),which does not require multiple iterations,helps to solve the above disadvantages of LSTM.Weighted Broad Learning System (WBLS) reduces the impact of noise and outliers on precipitation prediction accuracy by introducing a weighted penalty factor constraint to assign sample weights in the BLS.Thus a LSTM-WBLS daily precipitation prediction model is proposed in this paper.The daily precipitation at Badong station in Hubei province is selected for empirical study.And the influence of air pressure,temperature,humidity,wind speed and sunshine on precipitation is considered.The experimental results demonstrate that the LSTM-BLS model has significantly improved the prediction accuracy in the evaluation indexes of RMSE,MAE and R2 compared with existing prediction models.The prediction accuracy of the new model outperforms existing models at different time steps,proving its stability.In particular,the direct calculation of weights by WBLS does not make any reduction in operational efficiency of LSTM-WBLS.

    参考文献
    相似文献
    引证文献
引用本文

韩莹,管健,曹允重,罗嘉. LSTM-WBLS模型在日降水量预测中的应用[J].南京信息工程大学学报(自然科学版),2023,15(2):180-186
HAN Ying, GUAN Jian, CAO Yunzhong, LUO Jia. Application of improved LSTM-WBLS model in daily precipitation forecast[J]. Journal of Nanjing University of Information Science & Technology, 2023,15(2):180-186

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-10-18
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-04-13
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司