LSTM-WBLS模型在日降水量预测中的应用
作者:
中图分类号:

TP183

基金项目:

南方海洋科学与工程广东省实验室(珠海)基金(SML2020SP007);国家自然科学基金(62076136)


Application of improved LSTM-WBLS model in daily precipitation forecast
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    基于长短时记忆网络(Long Short-Term Memory,LSTM)降水量预测模型存在过拟合、时滞现象,而宽度学习系统(Broad Learning System,BLS) 无需多次迭代的特点有助于解决LSTM的上述缺点.加权宽度学习系统(Weighted Broad Learning System,WBLS)通过在BLS中引入加权惩罚因子约束分配样本权重,降低噪声和异常值对降水量预测精度的影响.本文提出一种LSTM-WBLS日降水量预测模型,选取湖北省巴东站日降水量进行实证研究,并考虑气压、气温、湿度、风速和日照等因素对降水量的影响.实验结果表明,与现有的预测模型相比,LSTM-BLS模型在RMSE、MAE和R2等评价指标上均有显著提升.不同时间步长下,本文模型预测精度均优于现有模型,验证了其稳定性.与LSTM相比,WBLS直接计算权重的特点使得LSTM-WBLS的运算效率并未降低.

    Abstract:

    The popular Long Short-Term Memory (LSTM) based precipitation prediction models suffer from overfitting and time lag.Broad Learning System (BLS),which does not require multiple iterations,helps to solve the above disadvantages of LSTM.Weighted Broad Learning System (WBLS) reduces the impact of noise and outliers on precipitation prediction accuracy by introducing a weighted penalty factor constraint to assign sample weights in the BLS.Thus a LSTM-WBLS daily precipitation prediction model is proposed in this paper.The daily precipitation at Badong station in Hubei province is selected for empirical study.And the influence of air pressure,temperature,humidity,wind speed and sunshine on precipitation is considered.The experimental results demonstrate that the LSTM-BLS model has significantly improved the prediction accuracy in the evaluation indexes of RMSE,MAE and R2 compared with existing prediction models.The prediction accuracy of the new model outperforms existing models at different time steps,proving its stability.In particular,the direct calculation of weights by WBLS does not make any reduction in operational efficiency of LSTM-WBLS.

    参考文献
    [1] 王海鹏,张斌,刘祖涵,等.基于混沌理论的武汉、宜昌近60年来月降水特征的对比研究[J].自然灾害学报,2012,21(6):111-118 WANG Haipeng,ZHANG Bin,LIU Zuhan,et al.Chaos theory-based comparative study on monthly rainfall characteristics in Wuhan and Yichang during recent 60 years[J].Journal of Natural Disasters,2012,21(6):111-118
    [2] 张改红.基于ARIMA模型的渭南市降水量趋势分析与预测[J].价值工程,2019,38(34):197-199 ZHANG Gaihong.Analysis and prediction of precipitation trend in Weinan city based on ARIMA model[J].Value Engineering,2019,38(34):197-199
    [3] 胡盈,吴静.基于ARIMA模型的降水空间特征分析及预测[J].江西科学,2021,39(1):99-104 HU Ying,WU Jing.Analysis and prediction of precipitation spatial characteristics based on ARIMA model[J].Jiangxi Science,2021,39(1):99-104
    [4] Hartigan J,MacNamara S,Leslie L M,et al.Attribution and prediction of precipitation and temperature trends within the Sydney catchment using machine learning[J].Climate,2020,8(10):120
    [5] Xiang B,Zeng C F,Dong X N,et al.The application of a decision tree and stochastic forest model in summer precipitation prediction in Chongqing[J].Atmosphere,2020,11(5):508
    [6] Peng Y Z,Zhao H S,Zhang H,et al.An extreme learning machine and gene expression programming-based hybrid model for daily precipitation prediction[J].International Journal of Computational Intelligence Systems,2019,12(2):1512-1525
    [7] 勾志竟,任建玲,徐梅,等.基于Hadoop的GA-BP算法在降水预测中的应用[J].计算机系统应用,2019,28(9):140-146 GOU Zhijing,REN Jianling,XU Mei,et al.Application of GA-BP algorithm based on Hadoop in precipitation forecast[J].Computer Systems & Applications,2019,28(9):140-146
    [8] Rostam M G,Sadatinejad S J,Malekian A.Precipitation forecasting by large-scale climate indices and machine learning techniques[J].Journal of Arid Land,2020,12(5):854-864
    [9] Shen C P.A trans-disciplinary review of deep learning research for water resources scientists [J].Water Resources Research,2018,54(11):8558-8593
    [10] 王子岳,邵曦.基于S-LSTM模型利用'槽值门'机制的说话人意图识别[J].南京信息工程大学学报(自然科学版),2019,11(6):751-756 WANG Ziyue,SHAO Xi.Speaker intention recognition based on S-LSTM model and slot-gate[J].Journal of Nanjing University of Information Science & Technology (Natural Science Edition),2019,11(6):751-756
    [11] 王朋,孙永辉,翟苏巍,等.基于小波长短期记忆网络的风电功率超短期概率预测[J].南京信息工程大学学报(自然科学版),2019,11(4):460-466 WANG Peng,SUN Yonghui,ZHAI Suwei,et al.Ultra-short-term probability prediction of wind power based on wavelet decomposition and long short-term memory network[J].Journal of Nanjing University of Information Science & Technology (Natural Science Edition),2019,11(4):460-466
    [12] 罗嘉,王乐豪,涂姗姗,等.基于LSTM-BLS的突发气象灾害事件中公众情感倾向分析[J].南京信息工程大学学报(自然科学版),2021,13(4):477-483 LUO Jia,WANG Lehao,TU Shanshan,et al.Analysis of public sentiment tendency in sudden meteorological disasters based on LSTM-BLS[J].Journal of Nanjing University of Information Science & Technology (Natural Science Edition),2021,13(4):477-483
    [13] Nguyen D H,Kim J B,Bae D H.Improving radar-based rainfall forecasts by long short-term memory network in urban basins[J].Water,2021,13(6):776
    [14] 沈皓俊,罗勇,赵宗慈,等.基于LSTM网络的中国夏季降水预测研究[J].气候变化研究进展,2020,16(3):263-275 SHEN Haojun,LUO Yong,ZHAO Zongci,et al.Prediction of summer precipitation in China based on LSTM network[J].Climate Change Research,2020,16(3):263-275
    [15] Ni L L,Wang D,Singh V P,et al.Streamflow and rainfall forecasting by two long short-term memory-based models[J].Journal of Hydrology,2020,583:124296
    [16] Kang J L,Wang H M,Yuan F F,et al.Prediction of precipitation based on recurrent neural networks in Jingdezhen,Jiangxi province,China[J].Atmosphere,2020,11(3):246
    [17] Hochreiter S,Schmidhuber J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780
    [18] Chen C L P,Liu Z L,Feng S.Universal approximation capability of broad learning system and its structural variations[J].IEEE Transactions on Neural Networks and Learning Systems,2019,30(4):1191-1204
    [19] Chu F,Liang T,Chen C L P,et al.Weighted broad learning system and its application in nonlinear industrial process modeling[J].IEEE Transactions on Neural Networks and Learning Systems,2020,31(8):3017-3031
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

韩莹,管健,曹允重,罗嘉. LSTM-WBLS模型在日降水量预测中的应用[J].南京信息工程大学学报(自然科学版),2023,15(2):180-186
HAN Ying, GUAN Jian, CAO Yunzhong, LUO Jia. Application of improved LSTM-WBLS model in daily precipitation forecast[J]. Journal of Nanjing University of Information Science & Technology, 2023,15(2):180-186

复制
分享
文章指标
  • 点击次数:475
  • 下载次数: 1450
  • HTML阅读次数: 204
  • 引用次数: 0
历史
  • 收稿日期:2021-10-18
  • 在线发布日期: 2023-04-13

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司