基于组合注意力模型EAAT的云KPI数据预测方法
DOI:
作者:
作者单位:

中国民航大学计算机科学与技术学院 天津 300300

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然基金民航联合基金项目(U2033205,U1833114)


Cloud KPI data prediction method based on combined attention model EAAT
Author:
Affiliation:

College of Computer Science and Technology,Civil Aviation University Of China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了准确分析云计算集群日常监控中KPI数据的动态和变化趋势,并预测后续发展,达到提高云计算集群高可用性的目标,本文提出三分频的基于组合注意力模型的EAAT云KPI数据预测方法。首先基于经验小波变换(简称EWT)得到云KPI数据低中高频的内在模态变量(简称IMFs)降低数据预测的复杂程度。其次,根据分解得到的低中高频IMFs信息特征,分别运用ARIMA、Autoformer,、TPA-BiLSTM模型对每类IMFs进行预测。最后,将分类预测后结果,经过逆变换IEWT加以合并得出预测结果。本文预测方法在谷歌和亚马逊的4个数据集上得到了验证,无论数据是否具有周期性或者稳定性,本文预测方法都有较好的结果,综合效果比单个模型有较大提升,比已有的EWT-IF-LSTM模型在谷歌数据集上的均方根误差最大降低了11.26%。

    Abstract:

    In order to accurately analyze the dynamics and changing trends of KPI data in the daily monitoring of cloud computing clusters and predict the subsequent development to achieve the goal of improving the high availability of cloud computing clusters, this paper proposes a three-frequency cloud KPI data prediction based on the combined attention model EAAT method. First, low, medium and high frequency intrinsic mode variables (IMFs) of cloud KPI data are obtained based on Empirical wavelet transform (EWT) to reduce the complexity of data prediction. Secondly, according to the information characteristics of low, medium and high frequency IMFs obtained from the decomposition, the ARIMA, Autoformer, and TPA-BiLSTM models are used to predict each type of IMFs. Finally, the classification prediction results are combined through the inverse transformation IEWT to obtain the prediction result of the KPI. The prediction method in this paper has been verified on four data sets from Google and Amazon. Regardless of whether the data is periodic or not, the prediction method in this paper has good results. The root mean square error of the EWT-IF-LSTM model on the Google data set is reduced by about 11.26%.

    参考文献
    相似文献
    引证文献
引用本文

丁建立,龚子恒.基于组合注意力模型EAAT的云KPI数据预测方法[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-01-08
  • 最后修改日期:2023-03-07
  • 录用日期:2023-03-08
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司