基于EEMD-CNN-GRU的短期风向预测
DOI:
作者:
作者单位:

西安建筑科技大学

作者简介:

通讯作者:

中图分类号:

TM614 ??????????????

基金项目:

国家重点研发计划课题(2018YFB1502902);陕西省自然科学基金项目(2021JM-378,2021JQ-493)


Short-term Wind Direction Forecasting Method Based on EEMD-CNN-GRU
Author:
Affiliation:

西安建筑科技大学

Fund Project:

National Key R&D Program of China (2018YFB1502902); the Natural Science Basic Research Plan in Shaanxi Province of China (2021JM-378,2021JQ-493)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高短期风向的预测精度,提出一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、卷积神经网络(Convolutional Neural Network,CNN)和门控循环单元网络(Gated Recurrent Unit,GRU)的混合模型:EEMD-CNN-GRU。针对风向序列的随机性和不平稳性等特点,先利用EEMD将数据分解成多个分量;再运用CNN的局部连接和权值共享来提取分量中的潜在特征;最后,使用GRU对CNN所提取的潜在特征进一步构建特征,叠加各分量的预测值,得到最终预测结果。实验结果表明:相对于BP神经网络和长短期记忆网络(Long Short-Term Memory,LSTM)等其它模型,所提出的预测方法取得了良好的性能。

    Abstract:

    In order to improve the accuracy of short-term wind direction forecasting, a hybrid model, named EEMD-CNN-GRU, is proposed based on ensemble empirical mode decomposition (EEMD), convolutional neural network (CNN) and gated recurrent unit (GRU). According to the characteristics of randomness and unsteadiness of wind direction series, EEMD is used to decompose the data into multiple components. Then, CNN’s local connection and weight sharing are harnessed to extract the potential features in the components. Finally, GRU is adopted to further construct features of the potential features extracted by CNN, and the predicted values of each component are superposed to obtain the ultimate prediction results. The experimental results show that the proposed prediction method achieves good performance compared with other models such as BP neural network and long short-term memory (LSTM).

    参考文献
    相似文献
    引证文献
引用本文

史加荣,缑璠.基于EEMD-CNN-GRU的短期风向预测[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-15
  • 最后修改日期:2022-12-06
  • 录用日期:2023-01-03
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司