基于改进的YOLOv5m电动车骑行者头盔与车牌检测方法
DOI:
作者:
作者单位:

南京信息工程大学

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

国家重点研发计划项目(2021YFE0105500);国家自然科学(62171228)。


Helmet and License Plate Detection Method for Electric Bike Rider Based on Improved YOLOv5m
Author:
Affiliation:

1.Nanjing University of Information Science &2.Technology

Fund Project:

State key R & D Program;The National Natural Science Foundation of China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电动车上路必须佩戴安全头盔已成为交管部门的强制性规定,为了能自动检测出电动车骑行者的头盔佩戴情况,提出了一种基于改进的YOLOv5m模型的头盔与车牌检测方法,在检测出骑行者未佩戴头盔的同时还能检测出电动车车牌,用于对违规者进行追责。模型使用自建电动车骑行者头盔与车牌检测数据集进行训练,用DIOU损失函数代替GIOU损失函数,DIOU_NMS代替加权NMS,增强模型对密集骑行场景的识别能力,同时在Backone部位与预测中小目标的Neck部位加入ECA注意力机制,使得模型对中小目标的识别率有所提高,接着,用Kmeans算法对锚框尺寸重新进行聚类,最后,改进Mosaic数据增强方式。实验结果表明:改进的 YOLOv5m 电动车骑行者头盔与车牌检测模型的 mAP 为 92.7%,较原 YOLOv5m 模型提高 2.15%,较 YOLOv4-tiny、Faster RCNN 模型分别提高 5.7%与 6.9%。改进后的 YOLOv5m 模型能有效提高对头盔与车牌的识别率。

    Abstract:

    It has become a mandatory requirement of the traffic management department that electric vehicles must wear safety helmets on the road. In order to automatically detect the wearing of helmets by electric vehicle riders, a helmet and license plate detection method based on the improved YOLOv5m model is proposed, which can detect the electric vehicle license plate while detecting that the riders do not wear helmets, so as to track down the violators. The model is trained with self built data set, and DIOU loss function is used to replace GIOU loss function, DIOU_NMS replaces weighted NMS to enhance the recognition ability of the model for dense cycling scenes. At the same time, ECA attention mechanism is added to the Backone part and the Neck part for predicting small and medium-sized targets, which improves the recognition rate of the model for small and medium-sized targets. Then, the Kmeans algorithm is used to re-cluster the anchor frame size. Finally, the Mosaic data enhancement method is improved.The experimental results show that the map of the improved YOLOv5m electric vehicle rider helmet and license plate detection model is 92.7%, which is 2.15% higher than the original YOLOv5m model, and 5.7% and 6.9% higher than the YOLOv4 tiny and Faster RCNN models respectively. The improved YOLOv5m model can effectively improve the recognition rate of helmet and license plate.

    参考文献
    相似文献
    引证文献
引用本文

庄建军,叶振兴.基于改进的YOLOv5m电动车骑行者头盔与车牌检测方法[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-10-27
  • 最后修改日期:2022-12-06
  • 录用日期:2023-01-03
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司