多尺度语义学习的人脸图像修复
DOI:
作者:
作者单位:

重庆师范大学

作者简介:

通讯作者:

中图分类号:

基金项目:

1.重庆市研究生联合培养基地项目(2019-45);2.重庆市教育委员会人文社会科学研究规划项目(21SKGH044)


Face image inpainting with multi-scale sematic learning
Author:
Affiliation:

Chongqing Normal University

Fund Project:

1.Chongqing Postgraduate Joint Training Base Project (Grant No.2019-45);2.Humanities and social sciences research planning project of Chongqing Education Commission (Grant number: 21SKGH044)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对卷积神经网络在图像修复过程中难以兼顾修复结果的局部细节和全局语义一致性问题,以生成对抗网络为基础,提出一种多尺度语义学习的编解码人脸图像修复模型。首先,将人脸图像用门控卷积分解为具有不同大小的感受野和特征分辨率的分量,用不同尺寸的卷积核提取多尺度特征,通过提取合适的局部特征来提升修复结果的细节;其次,将提取的多尺度特征输入至语义学习模块,从通道和空间两个角度学习特征之间的语义关系,从而增强修复结果的全局一致性;最后,引入跳跃连接将编码端的特征补充到解码端中减少采样造成的细节信息损失,改善修复结果的纹理细节。在CelebA-HQ人脸数据集上进行实验,结果表明提出的模型在峰值信噪比、结构相似性、\ell_1三个性能指标上均有显著提升,修复的结果在视觉上局部细节和全局语义更合理。

    Abstract:

    To address the issue that convolutional neural networks can hardly balance the local details and global semantic consistency of results in the process of image inpainting, a multi-scale semantic learning model for face image inpainting based on generative adversarial networks is proposed. Firstly, the face image is decomposed into components with different perceptual fields and feature resolutions using gated convolution, and multi-scale features are extracted using convolution kernels of different sizes to enhance the detail of the restoration results by extracting appropriate local features; Secondly, the extracted multi-scale features are fed into the semantic learning module to learn the semantic relationships between features from both the channel and spatial perspectives, thus enhancing the global consistency of the restoration results; finally, skip connections are introduced to complement the features on the encoding side to the decoding side to reduce the loss of detail information caused by sampling and improve the texture details of the restoration results. Experiments on the CelebA-HQ face dataset show that the proposed model has significant improvements in three performance metrics: peak signal to noise ratio, structure similarity, \ell_1, and the inpainting results are visually more reasonable in terms of local details and global semantics.

    参考文献
    相似文献
    引证文献
引用本文

左心悦,郝子娴,杨有.多尺度语义学习的人脸图像修复[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-10-10
  • 最后修改日期:2022-11-29
  • 录用日期:2022-12-09
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司