基于ConvLSTM及双重注意力机制的2m气温预报订正方法
DOI:
作者:
作者单位:

1.南京信息工程大学 人工智能学院/未来技术学院;2.南京信息工程大学 电子与信息工程学院

作者简介:

通讯作者:

中图分类号:

TP399????????????? ?????????????

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Correction Method of 2m Temperature Forecast Based on ConvLSTM and Double Attention Mechanism
Author:
Affiliation:

1.School of Artificial Intelligence/School of Future Technology,Nanjing University of Information Science and Technology;2.School of Electronic and Information Engineering,Nanjing University of Information Science and Technology

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了降低2m气温传统数值预报模型(GRAPES_GFS)的预测值和观测值之间的高偏差,提高预测精度。本文结合气象数值模式(GRAPES_GFS)格点资料以及对应的观测资料,提出了一种基于卷积长短时记忆网络(ConvLSTM)并结合注意力机制的2m气温预报订正模型。该模型主要包括以下步骤:首先,由局部特征提取模块提取输入数据的局部浅层特征。其次,将提取到的特征图输入特征注意力模块,对数据的不同通道维度与不同空间维度赋予不同的权重,抑制与2m气温相关性低的气象要素的权重,实现对2m气温数据中高温地区的局部增强。最后,采用ConvLSTM网络捕获数据时间维度特征,同时输出预报订正结果。实验结果表明:该模型在时效为12-36小时的2m气温预报中,与GRAPES_GFS模式预报结果相比,各项数值评价指标均有改善,皮尔森相关系数从0.5左右提升到0.88左右,均方根误差从1.74-2.06℃降低到0.9-1.1℃,平均绝对误差从1.36-1.64℃降低到0.7-0.84℃;同时与主流订正模型相比,该模型也取得了较好的订正效果。

    Abstract:

    In order to reduce the high deviation between the predicted value and the observed value of the traditional numerical prediction model (GRAPES_GFS) of 2m temperature and improve the prediction accuracy. Combining the grid data of GRAPES_GFS and the corresponding observation data, this paper proposes a 2m temperature forecast correction model based on Convolution Long Short Time Memory Network (ConvLSTM) and attention mechanism. The model mainly includes the following steps: First, the local shallow features of the input data are extracted by the local feature extraction module. Secondly, input the extracted feature map into the feature attention module, assign different weights to different channel dimensions and different spatial dimensions of the data, restrain the weight of meteorological elements with low correlation with 2m temperature, and achieve local enhancement of high-temperature areas in 2m temperature data. Finally, ConvLSTM network is used to capture the time dimension characteristics of data and output the forecast correction results. The experimental results show that, compared with the prediction results of GRAPES_GFS, each numerical evaluation index of the model is improved in the 2 m temperature prediction with an aging of 12-36 hours. The Pearson correlation coefficient increases from about 0.5 to about 0.88, the root mean square error decreases from 1.74-2.06 ℃ to 0.9-1.1 ℃, and the average absolute error decreases from 1.36-1.64℃ to 0.7-0.84℃; At the same time, compared with the mainstream revised models, the model also achieved better correction results.

    参考文献
    相似文献
    引证文献
引用本文

房善普,邱雨楠,陆振宇.基于ConvLSTM及双重注意力机制的2m气温预报订正方法[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-09-15
  • 最后修改日期:2022-12-05
  • 录用日期:2022-12-12
  • 在线发布日期:
  • 出版日期:

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司