基于ConvLSTM及双重注意力机制的2m气温预报订正方法
作者:
作者单位:

1.南京信息工程大学 人工智能学院/未来技术学院;2.南京信息工程大学 电子与信息工程学院

中图分类号:

TP399????????????? ?????????????

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Correction Method of 2m Temperature Forecast Based on ConvLSTM and Double Attention Mechanism
Author:
Affiliation:

1.School of Artificial Intelligence/School of Future Technology,Nanjing University of Information Science and Technology;2.School of Electronic and Information Engineering,Nanjing University of Information Science and Technology

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了降低2m气温传统数值预报模型(GRAPES_GFS)的预测值和观测值之间的高偏差,提高预测精度。本文结合气象数值模式(GRAPES_GFS)格点资料以及对应的观测资料,提出了一种基于卷积长短时记忆网络(ConvLSTM)并结合注意力机制的2m气温预报订正模型。该模型主要包括以下步骤:首先,由局部特征提取模块提取输入数据的局部浅层特征。其次,将提取到的特征图输入特征注意力模块,对数据的不同通道维度与不同空间维度赋予不同的权重,抑制与2m气温相关性低的气象要素的权重,实现对2m气温数据中高温地区的局部增强。最后,采用ConvLSTM网络捕获数据时间维度特征,同时输出预报订正结果。实验结果表明:该模型在时效为12-36小时的2m气温预报中,与GRAPES_GFS模式预报结果相比,各项数值评价指标均有改善,皮尔森相关系数从0.5左右提升到0.88左右,均方根误差从1.74-2.06℃降低到0.9-1.1℃,平均绝对误差从1.36-1.64℃降低到0.7-0.84℃;同时与主流订正模型相比,该模型也取得了较好的订正效果。

    Abstract:

    In order to reduce the high deviation between the predicted value and the observed value of the traditional numerical prediction model (GRAPES_GFS) of 2m temperature and improve the prediction accuracy. Combining the grid data of GRAPES_GFS and the corresponding observation data, this paper proposes a 2m temperature forecast correction model based on Convolution Long Short Time Memory Network (ConvLSTM) and attention mechanism. The model mainly includes the following steps: First, the local shallow features of the input data are extracted by the local feature extraction module. Secondly, input the extracted feature map into the feature attention module, assign different weights to different channel dimensions and different spatial dimensions of the data, restrain the weight of meteorological elements with low correlation with 2m temperature, and achieve local enhancement of high-temperature areas in 2m temperature data. Finally, ConvLSTM network is used to capture the time dimension characteristics of data and output the forecast correction results. The experimental results show that, compared with the prediction results of GRAPES_GFS, each numerical evaluation index of the model is improved in the 2 m temperature prediction with an aging of 12-36 hours. The Pearson correlation coefficient increases from about 0.5 to about 0.88, the root mean square error decreases from 1.74-2.06 ℃ to 0.9-1.1 ℃, and the average absolute error decreases from 1.36-1.64℃ to 0.7-0.84℃; At the same time, compared with the mainstream revised models, the model also achieved better correction results.

    参考文献
    [1] Bonavita M,Elias Hólm,Isaksen L,et al.The evolution of the ECMWF hybrid data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2016,142(694).
    [2] Gregory D,J.‐J.Morcrette,Jakob C,et al.Revision of convection,radiation and cloud schemes in the ECMWF integrated forecasting system[J].Quarterly Journal of the Royal Meteorological Society, 2010,126(566).
    [3] Tibalidi S,Palmer T N,BRANKOVI? ?,et al.,2010.Extended‐range predictions with ecmwf models: Influence of horizontal resolution on systematic error and forecast skill[J].Quarterly Journal of the Royal Meteorological Society,116(494):835-866.
    [4] 潘留杰,张宏芳,朱伟军,等.ECMWF模式对东北半球气象要素场预报能力的检验[J].气候与环境研究,2013,18(01):111-123. Pan Liu Jie,Zhang Hong Fang,Zhu Wei Jun,et al.Forecast Performance Verification of the ECMWF Model over the Northeast Hemisphere[J].Climatic and Environmental Research, 2013,18(01):111-123.
    [5] 任宏利,丑纪范.数值模式的预报策略和方法研究进展[J].地球科学进展,2007,22(04):376-385. Ren Hong Li,Chou Ji Fan, Study Progress in Prediction Strategy and Methodology on Numerical Mode[J]. Advances in Earth Science, 2007,22(4):376-385.
    [6] 尹姗,马杰,张恒德,等.ECMWF模式的延伸期日最高气温预报偏差估计及订正分析[J].沙漠与绿洲气象,2020,14(06):77-84. Yi Shan,Ma Jie,Zhang Heng De,et al. Error Estimation and Correction of the Extended-Range Daily Maximum Temperature in the ECMWF Model[J].Desert and Oasis Meteorology, 2020,14(6):77-84.
    [7] 戴翼,何娜,付宗钰,等,北京智能网格温度客观预报方法(BJTM)及预报效果检验[J].干旱气象, 2019,37(2):7. Dai Yi,He Na,Fu Zong Yu,et al.Beijing Intelligent Grid Temperature Objective Prediction Method ( BJTM) and Verification of Forecast Result[J].Arid Meteorology, 2019,37(2):7.
    [8] 王婧,徐枝芳,范广洲, 等.GRAPES_RAFS系统2 m温度偏差订正方法研究[J].气象, 2015,41(6):719-726. Wang Jing,Xu Zhi Fang,Fan Guang Zhou,et al.Study on Bias Correction for the 2 m Temperature Forecast of GRAPESRAFS[J]. Meteorological Monthly, 2015,41(6):719-726.
    [9] 罗聪,曾沁,高亭亭,等.精细化逐时滚动温度预报方法及检验[J].热带气象学报, 2012,28(4):552-556. Luo Cong,Zeng Qin,Gao Ting Ting,et al.Research of Seamless Hourly Updated Forecast of Temperature and Verification[J].Journal of Tropical Meteorology, 2012,28(4):552-556.
    [10] 孙全德,焦瑞莉,夏江江,等.基于机器学习的数值天气预报风速订正研究[J].气象, 2019,45(3):426-436. Sun Quan De,Jiao Rui Li,Xia Jiang Jiang,et al.Adjusting Wind Speed Prediction of Numerical Weather Forecast Model Based on Machine Learning Methods[J]. Meteorological Monthly, 2019,45(3):426-436.
    [11] 智协飞,李刚,彭婷.基于贝叶斯理论的单站地面气温的概率预报研究[J].大气科学学报, 2014,37(06):740-748. Zhi Xie Fei,Li Gang,Peng Ting.On the probabilistic forecast of 2 meter temperature of a single station based on Bayesian theory[J].Transactions of Atmospheric Sciences, 2014,37(06):740-748.
    [12] 李宁,刘瑜,王大刚.基于ARIMA和EEMD的东江流域季节降水预报研究[J].人民珠江, 2019,40(3):52-58+70. Li Ning,Liu Yu,Wang Da Gang.Seasonal Precipitation Forecast Study Based on ARIMA and EEMD in the Dongjiang River Basin[J].Pearl River,2019,40(3):52-58+70.
    [13] 李超,李明华,周凯,等.基于KNN回归算法的浙江省温度预报改进研究[J].气象与环境科学, 2022,45(1):9. Li Chao,Li Ming Hua,Zhou Kai,et al.Application of KNN Approach in lmprovement of Temperature Forecast in Zhejiang[J].Meteorological and Environmental Sciences, 2022,45(1):9.
    [14] 黄威,牛若芸,2017.基于集合预报和支持向量机的中期强降雨集成预报试验[J].气象,43(9):7. Huang W,Niu R Y,2017.The Medium-Term Multi-Model Integration Forecast Experimentation for Heavy Rain Based on Support Vector Machine[J].Meteorological Monthly,43(9):7.
    [15] 张天虎,鲍艳松,钱芝颖,等.基于BP神经网络与遗传算法反演大气温湿廓线[J].热带气象学报, 2020,36(1):97-107. Zhang Tian Hu,Bao Yan Song,Qian Zhi Ying,et al.ATMOSPHERIC TEMPERATURE AND HUMIDITY PROFILE RETRIEVALS BASED ON BP NEURALNETWORK AND GENETIC ALGORITHM[J].Journal of Tropical Meteorology, 2020,36(1):97-107.
    [16] 张恒德,张庭玉,李涛,等.基于BP神经网络的污染物浓度多模式集成预报[J].中国环境科学,2018,38(4):1243-1256. Zhang Heng De,Zhang Ting Yu,Li Tao,et al.Forecast of air quality pollutants'' concentrations based on BP neural network multi-model ensemble method[J].China Environmental Science, 2018,38(4):1243-1256.
    [17] 王焕毅,谭政华,杨萌,等.三种数值模式气温预报产品的检验及误差订正方法研究[J].气象与环境学报,2018,34(1):22-29. Wang Huan Yi,Tan Zhen Hua,Yang Meng,et al.Research on air temperature product examination of three numerical forecast and a method of error correction[J].Journal of Meteorology and Environment,2018,34(1):22-29.
    [18] 倪铮,梁萍.基于LSTM深度神经网络的精细化气温预报初探[J].计算机应用与软件, 2018,35(11):233-236+271. Ni Zheng,Liang Ping.Fine temperature forecast based on LSTM deep neural network[J].Computer Applications and Software,2018,35(11):233-236+271.
    [19] Shi X,Chen Z,Wang H,et al.Convolutional LSTM network:A machine learning approach for precipitation nowcasting[C]//MIT Press,MIT Press.2015.
    [20] Vaswani A,Shazeer N,Parmar N,et al.Attention is all you need[C]//arXiv.arXiv,2017.
    [21] Jie H,Li S,Gang S,et al.Squeeze-and-Excitation Networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,PP(99).
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

房善普,邱雨楠,陆振宇.基于ConvLSTM及双重注意力机制的2m气温预报订正方法[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-09-15
  • 最后修改日期:2022-12-05
  • 录用日期:2022-12-12

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司