基于氧空位构筑路易斯酸碱位点及其在环境光催化中的应用
作者:
作者单位:

1.中国地质大学(北京)材料科学与工程学院,非金属矿物与固废资源材料化利用北京市重点实验室;2.清华大学环境学院水质与水生态研究中心

基金项目:

国家自然科学基金(No. 51978372)


Constructing Lewis acid-base sites based on oxygen vacancies and their application in environmental photocatalysis
Author:
Affiliation:

1.School of Materials Science and Technology, China University of Geosciences,Beijing;2.Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes;3.Center for Water and Ecology,School of Environment, Tsinghua University

Fund Project:

National Natural Science Foundation of China (No. 51978372)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    近年来,越来越多的科研工作者试图将催化活性与催化剂中氧空位的酸碱性联系起来,通过结合路易斯酸碱活性位点对氧空位缺陷在确定催化特性和电荷载流子动力学中所起作用的深入理解,可以为合理开发更有效的催化剂提供有价值的见解。氧空位是过渡金属氧化物中最常见的缺陷,含氧空位的催化剂与表面酸碱性如何影响反应物、中间体和固体表面产物的吸附、反应和解吸过程密切相关。为此,氧空位位置和氧空位的酸碱性在多相催化的历史中一直起着核心作用,多相催化剂的表面性质将在很大程度上决定表面活性位点的电子结构,从而显著影响其相应的催化效率、稳定性和化学选择性,研究基于氧空位缺陷构建路易斯酸碱位点的催化剂,对于各类分子活化、催化转化反应的性能提升具有重要意义。本文以含氧空位的固体催化剂为研究对象,对关于氧空位构筑路易斯酸碱位点的研究进行综述,并总结了其在光催化领域中的相关应用。

    Abstract:

    In recent years, an increasing number of researchers have attempted to link catalytic activity to the acidity and basicity of the oxygen vacancies in catalysts. A deeper understanding of the role played by oxygen vacancy defects in determining catalytic properties and charge carrier dynamics by combining Lewis acid-base active sites can provide valuable insights for the rational development of more efficient catalysts. Oxygen vacancies are the most common defect in transition metal oxides, and catalysts containing oxygen vacancies are closely related to how surface acidity and basicity affect the adsorption, reaction, and desorption processes of reactants, intermediates, and solid surface products. To this end, the location of oxygen vacancies and the acid-base of oxygen vacancies have always played a central role in the history of multiphase catalysis, and the surface properties of multiphase catalysts will largely determine the electronic structure of the surface active sites, thus significantly affecting their corresponding catalytic efficiency, stability, and chemoselectivity. The study of the construction of Lewis acid-base sites based on oxygen vacancy defects in catalysts is of great significance for the performance enhancement of various molecular activation and catalytic conversion reactions. In this paper, we review the research on oxygen vacancy-containing solid catalysts for the construction of Lewis acid-base sites and summarize their relevant applications in environmental catalysis. This paper is a review of the research on the oxygen vacancy-containing solid catalysts for the construction of Lewis acid-base sites and summarizes their relevant applications in the field of photochemical catalysis.

    参考文献
    [1] Védrine J C. The Role of Redox, Acid-Base and Collective Properties and of Cristalline State of Heterogeneous Catalysts in the Selective Oxidation of Hydrocarbons[J]. Topics in catalysis. 2002, 21(1): 97-106.
    [2] Hoch L B, Szymanski P, Ghuman K K, et al. Carrier dynamics and the role of surface defects: Designing a photocatalyst for gas-phase CO2 reduction[J]. Proceedings of the National Academy of Sciences. 2016, 113(50): 8011-8020.
    [3] Lewis, G. N.Valence and the Structure of Atoms and Molecules; Chemical Catalogue Company, Inc. : New York, 1923.
    [4] Van Doren J B. Valence and the structure of atoms and molecules (Lewis, G. N.)[J]. Journal of Chemical Education. 1967, 44(1): A82.
    [5] Mcfarland E W, Metiu H. Catalysis by Doped Oxides[J]. Chemical Reviews. 2013, 113(6): 4391-4427.
    [6] Metiu H, Chrétien S, Hu Z, et al. Chemistry of Lewis Acid–Base Pairs on Oxide Surfaces[J]. The Journal of Physical Chemistry C. 2012, 116(19): 10439-10450.
    [7] Jian Y, Tian M, He C, et al. Efficient propane low-temperature destruction by Co3O4 crystal facets engineering: Unveiling the decisive role of lattice and oxygen defects and surface acid-base pairs[J]. Applied Catalysis B: Environmental. 2021, 283: 119657.
    [8] Lamberti C, Zecchina A, Groppo E, et al. Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy[J]. Chemical Society Reviews. 2010, 39(12): 4951-5001.
    [9] Mccahill J S J, Welch G C, Stephan D W. Reactivity of "Frustrated Lewis Pairs": Three-Component Reactions of Phosphines, a Borane, and Olefins[J]. Angewandte Chemie. 2007, 119(26): 5056-5059.
    [10] Ma Y, Zhang S, Chang C, et al. Semi-solid and solid frustrated Lewis pair catalysts[J]. Chemical Society Reviews. 2018, 47(15): 5541-5553.
    [11] Stephan D W. Frustrated Lewis Pairs: From Concept to Catalysis[J]. Accounts of Chemical Research. 2015, 48(2): 306-316.
    [12] Stephan D W. The broadening reach of frustrated Lewis pair chemistry[J]. Science. 2016, 354(6317): aaf7229.
    [13] Xing J, Buffet J, Rees N H, et al. Hydrogen cleavage by solid-phase frustrated Lewis pairs[J]. Chemical Communications. 2016, 52(69): 10478-10481.
    [14] Zhang S, Xia Z, Zou Y, et al. Interfacial Frustrated Lewis Pairs of CeO2 Activate CO2 for Selective Tandem Transformation of Olefins and CO2 into Cyclic Carbonates[J]. Journal of the American Chemical Society. 2019, 141(29): 11353-11357.
    [15] Riley C, Zhou S, Kunwar D, et al. Design of Effective Catalysts for Selective Alkyne Hydrogenation by Doping of Ceria with a Single-Atom Promotor[J]. Journal of the American Chemical Society. 2018, 140(40): 12964-12973.
    [16] He L, Wood T E, Wu B, et al. Spatial Separation of Charge Carriers in In2O3-x(OH)y? Nanocrystal Superstructures for Enhanced Gas-Phase Photocatalytic Activity[J]. ACS Nano. 2016, 10(5): 5578-5586.
    [17] Ghuman K K, Hoch L B, Szymanski P, et al. Photoexcited Surface Frustrated Lewis Pairs for Heterogeneous Photocatalytic CO2 Reduction[J]. Journal of the American Chemical Society. 2016, 138(4): 1206-1214.
    [18] Hoch L B, He L, Qiao Q, et al. Effect of Precursor Selection on the Photocatalytic Performance of Indium Oxide Nanomaterials for Gas-Phase CO2 Reduction[J]. Chemistry of Materials. 2016, 28(12): 4160-4168.
    [19] Ghoussoub M, Yadav S, Ghuman K K, et al. Metadynamics-Biased ab Initio Molecular Dynamics Study of Heterogeneous CO2 Reduction via Surface Frustrated Lewis Pairs[J]. ACS Catalysis. 2016, 6(10): 7109-7117.
    [20] Ghuman K K, Hoch L B, Wood T E, et al. Surface Analogues of Molecular Frustrated Lewis Pairs in Heterogeneous CO2 Hydrogenation Catalysis[J]. ACS Catalysis. 2016, 6(9): 5764-5770.
    [21] Sun Z, Yang Z, Liu H, et al. Visible-light CO2 photocatalytic reduction performance of ball-flower-like Bi2WO6 synthesized without organic precursor: Effect of post-calcination and water vapor[J]. Applied Surface Science. 2014, 315: 360-367.
    [22] Ghuman K K, Hoch L B, Wood T E, et al. Surface Analogues of Molecular Frustrated Lewis Pairs in Heterogeneous CO2 Hydrogenation Catalysis[J]. ACS Catalysis. 2016, 6(9): 5764-5770.
    [23] Li H, Qin F, Yang Z, et al. New Reaction Pathway Induced by Plasmon for Selective Benzyl Alcohol Oxidation on BiOCl Possessing Oxygen Vacancies[J]. Journal of the American Chemical Society. 2017, 139(9): 3513-3521.
    [24] Ma Y, Gao W, Zhang Z, et al. Regulating the surface of nanoceria and its applications in heterogeneous catalysis[J]. Surface Science Reports. 2018, 73(1): 1-36.
    [25] Zhuang L, Ge L, Yang Y, et al. Ultrathin Iron-Cobalt Oxide Nanosheets with Abundant Oxygen Vacancies for the Oxygen Evolution Reaction[J]. Advanced Materials. 2017, 29(17): 1606793.
    [26] Sun B, Zhou W, Li H, et al. Synthesis of Particulate Hierarchical Tandem Heterojunctions toward Optimized Photocatalytic Hydrogen Production[J]. Advanced Materials. 2018, 30(43): 1804282.
    [27] Xu Y, Li H, Sun B, et al. Surface oxygen vacancy defect-promoted electron-hole separation for porous defective ZnO hexagonal plates and enhanced solar-driven photocatalytic performance[J]. Chemical Engineering Journal. 2020, 379: 122295.
    [28] Hu Z, Metiu H. Effect of Dopants on the Energy of Oxygen-Vacancy Formation at the Surface of Ceria: Local or Global?[J]. The Journal of Physical Chemistry C. 2011, 115(36): 17898-17909.
    [29] Shiraishi Y, Hashimoto M, Chishiro K, et al. Photocatalytic Dinitrogen Fixation with Water on Bismuth Oxychloride in Chloride Solutions for Solar-to-Chemical Energy Conversion[J]. Journal of the American Chemical Society. 2020, 142(16): 7574-7583.
    [30] Hao L, Huang H, Zhang Y, et al. Oxygen Vacant Semiconductor Photocatalysts[J]. Advanced Functional Materials. 2021, 31(25): 2100919.
    [31] Zhang Z, Wang Y, Lu J, et al. Conversion of Isobutene and Formaldehyde to Diol using Praseodymium-Doped CeO2 Catalyst[J]. ACS Catalysis. 2016, 6(12): 8248-8254.
    [32] Li J, Zhang Z, Gao W, et al. Pressure Regulations on the Surface Properties of CeO2 Nanorods and Their Catalytic Activity for CO Oxidation and Nitrile Hydrolysis Reactions[J]. ACS Applied Materials Interfaces. 2016, 8(35): 22988-22996.
    [33] Cao N, Chen Z, Zang K, et al. Doping strain induced bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation[J]. Nature Communications. 2019, 10(1): 2877.
    [34] Liu J, Ma X, Li Y, et al. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism[J]. Nature Communications. 2018, 9(1): 1610.
    [35] Qi J, Zhou S, Xie K, et al. Catalytic role of assembled Ce Lewis acid sites over ceria for electrocatalytic conversion of dinitrogen to ammonia[J]. Journal of Energy Chemistry. 2021, 60: 249-258.
    [36] Pan X, Yang M, Fu X, et al. Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications[J]. Nanoscale. 2013, 5(9): 3601.
    [37] Li H, Shang J, Yang Z, et al. Oxygen Vacancy Associated Surface Fenton Chemistry: Surface Structure Dependent Hydroxyl Radicals Generation and Substrate Dependent Reactivity[J]. Environ Sci Technol. 2017, 51(10): 5685-5694.
    [38] Zhang B, Wang L, Zhang Y, et al. Ultrathin FeOOH Nanolayers with Abundant Oxygen Vacancies on BiVO4 Photoanodes for Efficient Water Oxidation[J]. Angewandte Chemie International Edition. 2018, 57(8): 2248-2252.
    [39] Campbell C T, Peden C H F. Oxygen Vacancies and Catalysis on Ceria Surfaces[J]. Science. 2005, 309(5735): 713-714.
    [40] Huang Z, Liu L, Qi S, et al. Understanding All-Solid Frustrated-Lewis-Pair Sites on CeO2 from Theoretical Perspectives[J]. ACS Catalysis. 2018, 8(1): 546-554.
    [41] Zhang S, Huang Z, Ma Y, et al. Solid frustrated-Lewis-pair catalysts constructed by regulations on surface defects of porous nanorods of CeO2[J]. Nature Communications. 2017, 8(1): 15266.
    [42] Wang H, Zhang W, Lu L, et al. Dual-metal hydroxide with ordering frustrated Lewis pairs for photoactivating CO2 to CO[J]. Applied Catalysis B: Environmental. 2021, 283: 119639.
    [43] Yan T, Li N, Wang L, et al. Bismuth atom tailoring of indium oxide surface frustrated Lewis pairs boosts heterogeneous CO2 photocatalytic hydrogenation[J]. Nature Communications. 2020, 11(1): 6095.
    [44] Pu Y, Luo Y, Wei X, et al. Synergistic effects of Cu2O-decorated CeO2 on photocatalytic CO2 reduction: Surface Lewis acid/base and oxygen defect[J]. Applied Catalysis B: Environmental. 2019, 254: 580-586.
    [45] Sethi A, Uma S, Nagarajan R. Boosting defects through divalent ion substitution to tailor the optical, textural, catalytic, and photocatalytic properties of Th4+-stabilized δ-Bi2O3[J]. Materials Science in Semiconductor Processing. 2022, 141: 106441.
    [46] Siakavelas G I, Charisiou N D, Alkhoori S, et al. Highly selective and stable nickel catalysts supported on ceria promoted with Sm2O3, Pr2O3 and MgO for the CO2 methanation reaction[J]. Applied Catalysis B: Environmental. 2021, 282: 119562.
    [47] González J, Wang J A, Chen L, et al. Quantitative determination of oxygen defects, surface lewis acidity, and catalytic properties of mesoporous MoO3/SBA-15 catalysts[J]. Journal of Solid State Chemistry. 2018, 263: 100-114.
    [48] Feng X, Tian M, He C, et al. Yolk-shell-like mesoporous CoCrOx with superior activity and chlorine resistance in dichloromethane destruction[J]. Applied Catalysis B: Environmental. 2020, 264: 118493.
    [49] Wang Z, Wang W, Zhang L, et al. Surface oxygen vacancies on Co3O4 mediated catalytic formaldehyde oxidation at room temperature[J]. Catalysis Science Technology. 2016, 6(11): 3845-3853.
    [50] Cao S, Wang H, Shi M, et al. Impacts of Structure of CeO2/TiO2 Mixed Oxides Catalysts on Their Performances for Catalytic Combustion of Dichloromethane[J]. Catalysis Letters. 2016, 146(8): 1591-1599.
    [51] Yazdani P, Wang B, Gao F, et al. Role of the Strong Lewis Base Sites on Glucose Hydrogenolysis[J]. ChemCatChem. 2018, 10(17): 3845-3853.
    [52] Mandapaka R, Madras G. Aluminium and rhodium co-doped ceria for water gas shift reaction and CO oxidation[J]. Molecular Catalysis. 2018, 451: 4-12.
    [53] Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation[J]. Science (American Association for the Advancement of Science). 2017, 358(6369): 1419-1423.
    [54] Tada S, Ochieng O J, Kikuchi R, et al. Promotion of CO2 methanation activity and CH4 selectivity at low temperatures over Ru/CeO2/Al2O3 catalysts[J]. International Journal of Hydrogen Energy. 2014, 39(19): 10090-10100.
    [55] Wang F, He S, Chen H, et al. Active Site Dependent Reaction Mechanism over Ru/CeO2 Catalyst toward CO2 Methanation[J]. J Am Chem Soc. 2016, 138(19): 6298-6305.
    [56] Sakpal T, Lefferts L. Structure-dependent activity of CeO2 supported Ru catalysts for CO2 methanation[J]. Journal of Catalysis. 2018, 367: 171-180.
    [57] Wada S, Oka K, Watanabe K, et al. Catalytic conversion of carbon dioxide into dimethyl carbonate using reduced copper-cerium oxide catalysts as low as 353 K and 1.3 MPa and the reaction mechanism[J]. Frontiers in Chemistry. 2013, 1: 1-8.
    [58] Liu B, Li C, Zhang G, et al. Oxygen Vacancy Promoting Dimethyl Carbonate Synthesis from CO2 and Methanol over Zr-Doped CeO2 Nanorods[J]. ACS Catalysis. 2018, 8(11): 10446-10456.
    [59] Zhang W, Yang Z, Wang H, et al. Crystal facet-dependent frustrated Lewis pairs on dual-metal hydroxide for photocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental. 2022, 300: 120748.
    [60] Ye X, Yang C, Pan X, et al. Highly Selective Hydrogenation of CO2 to Ethanol via Designed Bifunctional Ir1-In2O3 Single-Atom Catalyst[J]. Journal of the American Chemical Society. 2020, 142(45): 19001-19005.
    [61] Li H, Li J, Ai Z, et al. Durch Sauerstoff-Leerstellen vermittelte Photokatalyse mit BiOCl: Reaktivit?t, Selektivit?t und Ausblick[J]. Angewandte Chemie. 2018, 130(1): 128-145.
    [62] Riley C, Zhou S, Kunwar D, et al. Design of Effective Catalysts for Selective Alkyne Hydrogenation by Doping of Ceria with a Single-Atom Promotor[J]. Journal of the American Chemical Society. 2018, 140(40): 12964-12973.
    [63] Zhou S, Gao L, Wei F, et al. On the mechanism of alkyne hydrogenation catalyzed by Ga-doped ceria[J]. Journal of Catalysis. 2019, 375: 410-418.
    [64] An J, Wang Y, Lu J, et al. Acid-Promoter-Free Ethylene Methoxycarbonylation over Ru-Clusters/Ceria: The Catalysis of Interfacial Lewis Acid-Base Pair[J]. Journal of the American Chemical Society. 2018, 140(11): 4172-4181.
    [65] Huang X, Zhang K, Peng B, et al. Ceria-Based Materials for Thermocatalytic and Photocatalytic Organic Synthesis[J]. ACS Catalysis. 2021, 11(15): 9618-9678.
    [66] Ma Y, Gao W, Zhang Z, et al. Regulating the surface of nanoceria and its applications in heterogeneous catalysis[J]. Surface Science Reports. 2018, 73(1): 1-36.
    [67] Chong R, Su C, Du Y, et al. Insights into the role of MgAl layered double oxides interlayer in Pt/TiO2 toward photocatalytic CO2 reduction[J]. Journal of Catalysis. 2018, 363: 92-101.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王兰心,安晓强.基于氧空位构筑路易斯酸碱位点及其在环境光催化中的应用[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:392
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-07-13
  • 最后修改日期:2022-09-29
  • 录用日期:2022-09-30

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司