基于改进多目标粒子群算法的储能式充电桩优化运行策略
作者:
作者单位:

1.南京信息工程大学 自动化学院;2.无锡学院

中图分类号:

TM724

基金项目:

江苏省重点研发计划社会发展项目(BE2015692)


Optimal operation strategy for energy storage charging pile based on improved multi-objective particle swarm algorithm
Author:
Affiliation:

1.Nanjing University of Information Science &2.Technology;3.Wuxi University;4.Automation college , Nanjing University of Information Science &

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对小区接入充电桩无序充放电加大负荷峰谷差率和用户成本的问题,提出一种储能式充电桩有序充放电优化运行策略。该优化策略在降低峰谷差率的前提下,以用户充电成本最低和充电桩利润最高为优化目标。选取典型日建立充电桩优化充放电调度模型,通过改进多目标粒子群优化算法进行求解,结合分时电价调整储能式充电桩的充放电功率。实验数据结果表明,该改进方法可有效提高算法收敛速度,更好地处理多目标问题,在储能调度上降低典型负荷峰谷差率55%,比原有算法优化了36%,能合理分配充电桩在谷时段储存电力资源,降低用户充电费用20%-30%,提高充电桩收益,实现电网、用户和充电桩三方共赢的目的。

    Abstract:

    Aiming at the problem of disorderly charging and discharging of cell access charging piles to increase the load peak-to-valley difference rate and user cost, an energy storage charging pile orderly charging and discharging optimization operation strategy was proposed. Under the premise of reducing the peak-to-valley difference rate, the optimization strategy aims to optimize the lowest charging cost and the highest profit of charging pile. A typical day is selected to establish the optimal charge and discharge scheduling model of the charging pile, which is solved by improving the multi-objective particle swarm optimization algorithm, and the charge and discharge power of the energy storage charging pile is adjusted in combination with the time-of-use electricity price. Experimental data show that the improved method can effectively improve the convergence speed of the algorithm and better deal with multi-objective problems, the dispatching method can effectively reduce the peak-to-valley difference rate of typical load by 55%, 36% better than the original algorithm, reasonably allocate charging piles to store power resources during valley hours, effectively reduce user charging costs by 20%-30%, and improve charging pile profits, so as to achieve the win-win goal of power grid, user and charging pile.

    参考文献
    [1] 蒋玉玲,侯思佳,徐懂理,等.电动汽车接入电网对配电网造成的影响分析[J].机电信息,2017(21):113-115.iang Yuling, Hou Sijia, Xu Dongli, et al. Analysis of the impact of electric vehicle access to power grid on the distribution network[J]. Electromechanical information, 2017(21):113-115.
    [2] 冯仕杰, 刘韬, 潘萨,等. 基于分层优化的电动汽车有序充电策略[J]. 电气工程学报, 2021, 16(3):8.eng Shijie, Liu Tao, Pan Sa, et al. Coordinated Charging Strategy for Electric Vehicles Based onHierarchical Optimization[J]. Journal of electrical engineering, 2021,16(3):8.
    [3] Kapustin N O, Grushevenko D A. Long-term electric vehicles outlook and their potential impacton electric grid[J]. Energy Policy, 2020, 137: 111103.
    [4] 袁欣,胡文博.考虑电动汽车有序充电的配电网重构降损策略[J].科学技术与工程,2019,19(34);213-220.Yuan Xin, Hu Wenbo. Reconfiguration strategy of distribution network for loss reduction consideri-ng orderly charging of electric vechles [J]. Scien-ce Technology and Engineering ,2019,19(34);213-220
    [5] 全慧, 李相俊, 贾学翠,等. 提高快充电站与配电网互动能力的储能系统模型及控制策略[J].电力系统自动化,2022,6;1-10Quan Hui, Li Xiangjun, Jia Xuecui,et al. Model and Control Strategy of Energy Storage System for Improving Interaction Capability Between Fast Charging Station and Distribution Network [J].Automation of Electric Power Systems, 2022,6;1-10
    [6] Liao Yungtang, and Chan Nanlu. Dispatch of EV charging station energy resources for sustainable mobility[J]. IEEE Transactions on Transportation Electrification,2015: 86-93.
    [7] 朱心月,岳云涛,李炳华,等. 电动汽车有序充放电分群调度策略[J]. 科学技术与工程,2021,21(19):8023-8030.hu Xinyue, Yue Yuntao, Li Binghua, et al. Orderly charging and discharging group scheduling strategy for electric vehicles[J]. Science technology and engineering, 2021,21(19):8023-8030.
    [8] 王杰, 唐菁敏, 刘思淼. 基于用户响应度的电动汽车有序充放电策略[J]. 电子测量技术.2021,41(1):31-36.Wang jie,Tang Jingmin, Liu Simiao. Orderly charging and discharging strategy of electric vehicles based on user responsiveness[J]. Electronic measurement technology.2021,41(1):31-36
    [9] 曾鸣, 杨雍琦, 向红伟,等. 兼容需求侧资源的"源-网-荷-储"协调优化调度模型[J]. 电力自动化设备, 2016, 36(2):10.eng Ming, Yang Yongqi, Xiang Hongwei, et al. Optimal dispatch model based on coordination between “generation-grid-load-energy storage” and demand-side resource[J].Electric power automation equipment. 2016, 36(2):10.
    [10] 杨锡运, 董德华, 李相俊,等. 商业园区储能系统削峰填谷的有功功率协调控制策略[J]. 电网技术, 2018, 42(8):11.ang Xiyun, Dong Dehua, Li Xiangjun,et al. Active Power Coordinated Control Strategy of Peak Load Shifting for Energy Storage System in Business Park[J]. Power System Technology, 2018, 42(8):11.
    [11] 于文山, 黎明, 由蕤. 含储能的三端SOP对主动配电网的潮流优化研究[J]. 太阳能学报, 2022, 43(3):10.u Wenshan, Li Ming ,You Rui. Power flow optimization study on active distribution network based on three-terminal sop with energy storge system[J]. Acta enenrgiae solaris sinica, 2022, 43(3):10.
    [12] Lv J, Song H, Liu Y, et al. Study on the impact of electric vehicle charging on voltage quality of distribution network [J]. J. Electrical Measurement Instrumentation, 2018, 55(22): 33-40.
    [13] Zhu L, Wang P. Study on indirect network effect on the construction of electric vehicle charging piles based on game theory analysis[J]. Energy procedia, 2019, 158: 3853-3858.
    [14] Hu Lanxin, Yue Feiyang. Research on intelligent peak-cutting and valley-filling charging and swapping mode based on potential game theory [C]//Journal of Physics: Conference Series. IOP Publishing, 2022, 2189(1): 012013.
    [15] Ul-Haq A, Cecati C, Strunz K, et al. Impact of electric vehicle charging on voltage unbalance in an urban distribution network[J]. Intelligent Industrial Systems, 2015, 1(1): 51-60.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李 鹏,俞天杨,俞 斌,周成伟,孟 伟.基于改进多目标粒子群算法的储能式充电桩优化运行策略[J].南京信息工程大学学报,,():

复制
分享
文章指标
  • 点击次数:582
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-06-27
  • 最后修改日期:2022-11-21
  • 录用日期:2023-02-12

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司