台风强度变化最快时涡度的解析解
作者:
中图分类号:

O175.2;P444

基金项目:

国家自然科学基金(41475091,41975087)


Analytical solution of vorticity when tropical cyclone intensity changes the fastest
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    利用旋转坐标系中的基本方程推导得到动能方程,通过动能的局地变化率定义刻画台风强度变化率的能量泛函,对泛函作变分得到Euler-Lagrange方程.分析方程可知,当台风强度变化率达到最大时,摩擦力、气压梯度力、重力和动能梯度满足四力平衡关系.因此,这四个力确定的向量可以作为台风强度的预报因子,更准确地确定台风系统强度变化率达到最大的时间点.进一步通过风场变分分解提取到有旋场中的最大涡旋,得到台风强度变化最快时涡度和流场的解析解,对研究台风发展过程中速度的变化趋势和台风的空间结构具有实用价值,为台风路径和强度预报提供了一定的理论指引.

    Abstract:

    In this study,the kinetic energy equation is derived from the basic equation in the rotating coordinate system,and then the energy functional describing the change rate of Tropical Cyclone (TC) intensity is defined by the local change rate of kinetic energy.Afterwards,the Euler-Lagrange equation is obtained by taking the variation of the functional.The equation shows that when the change rate of TC intensity reaches the maximum,the friction,the pressure gradient force,the gravity and the gradient of kinetic energy are balanced.Therefore,the vector determined by these four forces in the balance equation can be used as a predictor of TC intensity,which can more accurately determine the time when the intensity change rate of TCs reaches the maximum.Furthermore,the maximum vortex in a rotational field is extracted by the variational decomposition of wind field,and the analytical solution of vorticity and flow field are obtained when TC intensity changes the fastest.The conclusion has certain practical value for studying the variation trend of velocity and the spatial structure of TC in the evolution of TC,and provides certain theoretical guidance for TC track and intensity forecast.

    参考文献
    [1] Wang Y,Wu C C.Current understanding of tropical cyclone structure and intensity changes:a review[J].Meteorology and Atmospheric Physics,2004,87:257-278
    [2] 端义宏,余晖,伍荣生.热带气旋强度变化研究进展[J].气象学报,2005,63(5):636-645 DUAN Yihong,YU Hui,WU Rongsheng.Review of the research in the intensity change of typhoon cyclone[J].Acta Meteorologica Sinica,2005,63(5):636-645
    [3] Hazelton A T,Zhang X J,Gopalakrishnan S,et al.High-resolution ensemble HFV3 forecasts of hurricane Michael (2018):rapid intensification in shear[J].Monthly Weather Review,2020,148(5):2009-2032
    [4] Pandey R S,Liou Y A,Liu J C.Season-dependent variability and influential environmental factors of super-typhoons in the northwest Pacific basin during 2013-2017[J].Weather and Climate Extremes,2021,31(7051):100307
    [5] Yang H,Xu G Y,Wang X F,et al.Quantitative analysis of water vapor transport during Mei-yu front rainstorm period over the Tibetan Plateau and Yangtze-Huai River Basin[J].Advances in Meteorology,2019,2019(2):1-14
    [6] Yu J Q,Gao S,Zhang L,et al.Analysis of a remote rainstorm in the Yangtze River Delta region caused by typhoon Mangkhut (2018)[J].Journal of Marine Science and Engineering,2020,8(5):345
    [7] Done J M,Ge M,Holland G J,et al.Modelling global tropical cyclone wind footprints[J].Natural Hazards and Earth System Sciences,2020,20(2):567-580
    [8] Wada A,Kanada S,Yamada H.Effect of air-sea environmental conditions and interfacial processes on extremely intense typhoon Haiyan (2013)[J].Journal of Geophysical Research:Atmospheres,2018,123,10379-10405
    [9] Prakash K R,Pant V,Nigam T.Effects of the sea surface roughness and sea spray-induced flux parameterization on the simulations of a tropical cyclone[J].Journal of Geophysical Research:Atmospheres,2019,124:14037-14058
    [10] Arnold V I.Conditions for non-linear stability of stationary plane curvilinear flows of an ideal fluid[J].Dokl.Akad.Nauk SSSR,1965,162:975-978
    [11] Vallis G K.Mechanisms and parameterizations of geostrophic adjustment and a variational approach to balanced flow[J].Journal of the Atmospheric Sciences,1992,49:1144-1160
    [12] 伍荣生.Rossby波的能量、能量通量与Lagrange函数[J].气象学报,1986,44(2):158-165 WU Rongsheng.Energy,energy flux and lagrangian of rossby wave[J].Acta Meteorologica Sinica,1986,44(2):32-39
    [13] Finlayson B A.The method of weighted residuals and variational principles[M].Pittsburgh,PA:Academic Press,1972
    [14] Barth A,Beckers J M,Alvera-Azcarate A,et al.Filtering inertia-gravity waves from the initial conditions of the linear shallow water equations[J].Ocean Modelling,2007,19:204-218
    [15] 黄思训,蔡其发,项杰,等.台风风场分解[J].物理学报,2007,56(5):3022-3027 HUANG Sixun,CAI Qifa,XIANG Jie,et al.On decomposition of typhoon flow field[J].Acta Physica Sinica,2007,56(5):3022-3027
    [16] Wang S C,Huang S X.Sufficient conditions of Rayleigh-Taylor stability and instability in equatorial ionosphere[J].Applied Mathematics and Mechanics,2016,37:181-192
    [17] Badin G,Crisciani F.Variational principles in geophysical fluid dynamics and approximated equations[M]//Variational Formulation of Fluid and Geophysical Fluid Dynamics.Cham,Switzerland:Springer,2018:135-182
    [18] Mohan G M,Srinivas C V,Naidu C V,et al.Real-time numerical simulation of tropical cyclone Nilam with WRF:experiments with different initial conditions,3D-Var and ocean mixed layer model[J].Natural Hazards,2015,77:597-624
    [19] Cui Z Q,Pu Z X,Tallapragada V,et al.A preliminary impact study of CYGNSS ocean surface wind speeds on numerical simulations of hurricanes[J].Geophys Res Lett,2019,46(5):2984-2992
    [20] Singh K S,Bhaskaran P K.Prediction of landfalling Bay of Bengal cyclones during 2013 using the high resolution weather research and forecasting model[J].Meteorological Applications,2020,27(1):e1850
    [21] Zhang L,Tian X J,Zhang H Q,et al.Impacts of multigrid NLS-4DVar-based Doppler radar observation assimilation on numerical simulations of landfalling typhoon Haikui (2012)[J].Advances in Atmospheric Sciences,2020,37:873-892
    [22] 谢义炳,陈受钧,张一良,等.东南亚基本气流与台风发生的一些事实的统计与分析[J].气象学报,1963,21(2):206-217 XIE Yibing,CHEN Shoujun,ZHANG Yiliang,et al.A preliminarily statistic and synoptic study about the basic currents over southastern Asia and the initiation of typhoons[J].Acta Meteorologica Sinica,1963,21(2):206-217
    [23] 赵坤,王明筠,朱科锋,等.登陆台风边界层风廓线特征的地基雷达观测[J].气象学报,2015,73(5):837-852 ZHAO Kun,WANG Mingjun,ZHU Kefeng,et al.An analysis of the CINRAD-98D observations for the landfalling typhoon boundary layer wind profiles and their characteristics[J].Acta Meteorologica Sinica,2015,73(5):837-852
    [24] 阎凯.圆环旋转粘性液体射流稳定性及破碎研究[D].北京:北京交通大学,2014 YAN Kai.Study on stability and breakup of an annular swirling viscous liquid sheet[D].Beijing:Beijing Jiaotong University,2014
    [25] Asmar N H.Partial differential equations with Fourier series and boundary value problems[M].3rd ed.New York:Dover Publications,2016
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

范景威,周伟灿,冯也骋,官元红.台风强度变化最快时涡度的解析解[J].南京信息工程大学学报(自然科学版),2022,14(5):625-634
FAN Jingwei, ZHOU Weican, FENG Yecheng, GUAN Yuanhong. Analytical solution of vorticity when tropical cyclone intensity changes the fastest[J]. Journal of Nanjing University of Information Science & Technology, 2022,14(5):625-634

复制
分享
文章指标
  • 点击次数:66
  • 下载次数: 1418
  • HTML阅读次数: 27
  • 引用次数: 0
历史
  • 收稿日期:2021-09-19
  • 在线发布日期: 2022-09-29

地址:江苏省南京市宁六路219号    邮编:210044

联系电话:025-58731025    E-mail:nxdxb@nuist.edu.cn

南京信息工程大学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司